
Brief Announcement: A Family of Leaderless
Generalized-Consensus Algorithms

Giuliano Losa
ECE, Virginia Tech

glosa@vt.edu

Sebastiano Peluso
ECE, Virginia Tech

peluso@vt.edu

Binoy Ravindran
ECE, Virginia Tech

binoy@vt.edu

1. INTRODUCTION
Most distributed command-ordering algorithms inspired

by Paxos and MultiPaxos [4] rely on a unique leader process
which enforces an ordering on commands during fault-free
periods. In practice, the leader has more work to do than
other nodes, causing a load balancing problem and forming a
performance bottleneck. Moreover, in geo-replicated systems,
where bandwidth and latency vary considerably between sites,
using a unique leader that every site has to contact results in
uneven performance across sites, causing a fairness problem.

Recent ordering algorithms like S-Paxos [1] and Mencius [5]
address the load-balancing problem: S-Paxos decouples pay-
load distribution, which can be done without any undue bur-
den on the leader, from ordering, while Mencius periodically
rotates the role of leader among nodes. However, S-Paxos
and Mencius do not solve the fairness problem because nodes
have to contact other predetermined nodes independently of
the quality of communication links.

To solve the fairness problem, a node must be allowed to
choose which other nodes to communicate with based on the
performance of its network links, as in the EPaxos [6] and
Alvin [7] algorithms, both of which do not employ a unique
leader, and allow any node to choose the closest (in terms of
latency) quorum of nodes to reach agreement. EPaxos and
Alvin are based on a novel but intricate algorithmic idea first
introduced in EPaxos, which is difficult to generalize to devise
other algorithms with different performance characteristics.

In this paper we show that the core idea underlying EPaxos
can be captured in a generic leaderless generalized-consensus
algorithm that uses two new abstractions: a dependency-set
algorithm, which suggests dependencies for commands, and a
map-agreement algorithm, which ensures that, for each sub-
mitted command, processes agree on a dependency set. Both
abstractions lend themselves well to implementations that
avoid the use of a unique leader and let nodes choose which
set of nodes to communicate with for command ordering. Our
generic algorithm gives rise to a family of algorithms whose
members are obtained by using concrete dependency-set and
map-agreement algorithms.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PODC’16 July 25-28, 2016, Chicago, IL, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3964-3/16/07.

DOI: http://dx.doi.org/10.1145/2933057.2933072

On top of enabling modular correctness proofs of algo-
rithms like EPaxos, we expect that the modular structure of
our generic leaderless algorithm will allow a principled theo-
retical and empirical evaluation of the trade-offs that can be
achieved by different implementations of our two abstractions.
For example, some implementations may perform better in
a cluster, while others in a wide area network; similarly,
implementations of our abstractions may be optimized for
different metrics, such as agreement latency, impact of fail-
ures or conflicts, tolerance to slow processes, load balancing,
quorum size, etc.

A formalization of our work in TLA+ is available at http:
//losa.fr/research/leaderless.

2. LEADERLESS GENERALIZED-
CONSENSUS ALGORITHMS

We consider a set of processes P which are subject to crash-
stop faults and which communicate by message-passing in
an asynchronous network. Processes in P must solve the
Generalized Consensus problem [3], in which each process
receives proposals for commands of the form GC-propose(c),
must produce decisions of the form GC-decide(σ), where
σ is a c-struct, and the sequence of calls observed must
satisfy the non-triviality, consistency, stability, and liveness
properties of generalized consensus. We consider a set C
whose members we call c-structs, including the c-struct ⊥,
with an operator •, for appending commands to a c-struct,
such that any c-struct is of the form ⊥• cs for some sequence
of commands cs. Intuitively, a c-struct represents a set
of sequences of commands that are all equivalent up to
the ordering of commutative commands. We say that two
commands commute when σ • c1 • c2 = σ • c2 • c1, for every
c-struct σ. C-structs are partially ordered: σ1 v σ2 if and
only if there exists a sequence of commands s such that
σ2 = σ1 • s. Moreover, ⊥ v σ for any σ. A c-struct contains
a command c when it is of the form ⊥• cs where c appears in
the sequence of commands cs. Two c-structs are compatible
when they have a common upper bound that is constructible
from the commands contained in the two c-structs. The non-
triviality property of generalized consensus requires that any
decided c-struct be of the form ⊥•D, where D is a sequence
of proposed commands; consistency requires that any two
decided c-structs σ1 and σ2 be compatible; stability requires
that when a process p decides a c-struct σ1 at time t1 and σ2

at time t2, then t1 ≤ t2 implies that σ1 v σ2; finally, liveness
requires that if a command keeps being proposed, then a
c-struct σ containing the command is eventually decided.
We refer the reader to Lamport [3] for a thorough discussion

http://dx.doi.org/10.1145/2933057.2933072
http://losa.fr/research/leaderless
http://losa.fr/research/leaderless


Generalized Consensus Interface

GC-proposep(c) GC-decidep(c-struct(mp))

announcep(c) suggestp(c,D) proposep(c,D) commitp(c, D′)

3

2 4

5

1 6

Dependency-Set
Algorithm

Map-Agreement
Algorithm

Figure 1: Control flow of a process p using our ab-
stractions; numbers describe the order of events.

of c-structs and generalized consensus.
Our leaderless generalized consensus algorithm orchestrates

a dependency-set algorithm and map-agreement algorithm
to implement Generalized Consensus, as shown in fig. 1. A
process p maintains two local variables mp, a map from
commands to sets of commands, and σp, a c-struct. Upon
receiving a command c, p proceeds in three phases. First, it
calls the dependency-set algorithm (Section 2.1) to determine
a set of commands D on which the command c may depend.
Second, p proposes the mapping c 7→ D to the map-agreement
algorithm (Section 2.2); when the map-agreement algorithm
commits a mapping c 7→ D′ for c, p inserts the mapping
c 7→ D′ in mp, and we say that D′ is the dependency set of
c. We say that c is executable in mp when every command
associated to c in the transitive closure of mp is in the domain
of mp. Finally, when c is executable in mp, then p may locally
run the graph-processing algorithm described in Section 2.3
on mp, obtaining a c-struct σ, and then call GC-decide (σ).

Any other process can start and run the three phases for
the same command in parallel with the initial proposer of
the command, and eventually execute the command, so that
a command will be eventually included in a decided c-struct
despite failures.

2.1 Computing Potential Dependency Sets
A dependency-set algorithm exposes the following inter-

faces at each process p: the input interface announcep (c), to
announce a command c; the output interface suggestp (c,D),
to suggest a set of dependencies D for c; and the input inter-
face commit (c,D), to observe which command is committed
by the map-agreement abstraction. Moreover, a dependency-
set algorithm must ensure the following properties:

- Safety: (S1), for any call suggestp (c,D), every com-
mand in {c}∪D must have been announced before; (S2),
for any two calls suggestp (c1,D1) and suggestq (c2,D2),
if c1 and c2 do not commute, then c1 ∈ D2 ∨ c2 ∈ D1.

- Liveness: (L1) If a call announcep (c) was made, then
eventually a suggestion suggest (c,D)p is made, and

(L2), if a suggestion suggestp(c,D) has been made and

no input commitq (c,D′) is observed, then eventually a
new suggestion suggestr (c,D′′) for r 6= p is made.

2.2 Agreeing on Dependency Sets
A map-agreement algorithm exposes the following interface

at each process p: the input interface proposep (c,D), to

9: upon initp()
10: cmdsp ← ∅
11: ∀c, depsp[c]← ∅
12: ∀c, heardp[c]← ∅
13: ∀c, suggestedp[c]← false

14: upon announcep(c)
15: cmdsp ← cmdsp ∪ {c}
16: ∀q ∈ P send 〈cmd | c〉 to q

17: upon receive 〈cmd | c〉 from q
18: D ← {d : d ∈ cmdsp ∧ d 6= c ∧ d � c}
19: cmdsp ← cmdsp ∪ {c}
20: send 〈deps | c,D〉 to q

21: upon receive 〈deps | c,D〉 from q
22: depsp[c]← depsp[c] ∪ D
23: heardp[c]← heardp[c] ∪ {q}
24: upon ∃c : heardp[c] ∈ quorums

∧ suggestedp[c] = false
25: suggestedp[c]← true
26: call suggestp(c, depsp[c])

Figure 2: Example of dependency-set algorithm im-
plementation.

propose a set of dependencies D for a command c; the output
interface commitp (c,D), to commit D for c. Moreover, a
map-agreement algorithm must ensure that:

- Safety: (S3), for any commit commitp (c,D), then D
has been proposed for c at an earlier time; (S4), for
any two calls commitp (c,D1) and commitq (c,D2), D1

is equal to D2.
- Liveness: (L3) if a proposal proposep (c,D) is made,

then eventually a decision commitp (c,D) is made.

2.3 Local Dependency-Graph Processing
The graph processing algorithm is executed locally by a

process when a new command becomes executable. Based
on the map mp, it computes a c-struct σ that is then used
to call GC-decide (σ). The map mp defines a directed graph
describing dependencies among commands, and that may
contain cycles. The graph processing algorithm breaks cycles
so as to obtain a partially ordered set of commands that
uniquely determines a c-struct. Relying on the properties of
the dependency-set and map-agreement algorithm expressed
in Lemma 2, the graph processing algorithm ensures the
non-triviality, consistency, and stability properties of Gener-
alized Consensus.

For each set of commands D, we assume that processes
initially agree on a total order <D on D. In practice, if each
commands is attached a unique identifier taken from a totally
ordered set, it is easy to defined and compute <D.

The local variable mp denotes a directed graph gp whose
set of vertices V (gp) is the executable commands of mp and
whose edges E (gp) are such that there is an edge from c1
to c2 if and only if c2 ∈ mp [c1] (i.e., c1 depends on c2). For
example, if mp = [c1 7→ {c2, c4}, c2 7→ {c3}, c3 7→ {c2}] then
V (gp) = {c2, c3} and E (gp) = {(c2, c3) , (c3, c2)}.

A directed graph g induces a partial order �g on its ver-
tices defined such that c1 �g c2 if and only if there is a
path from c2 to c1 and none from c1 to c2. For exam-
ple, consider h where V (h) = {c1, c2, c3, c4} and E (h) =
{(c1, c2) , (c2, c1) , (c1, c3)}. We have that �h= {(c3, c1)}.
We say that a total order � on V (g) is a linearization of g
when for every c1, c2 ∈ V (g), c1 �g c2 implies c1 � c2, and if
c1 and c2 belong to the same strongly connected component
D and c1 <D c2 hold, then c1 � c2. For example, assuming
that c1 <{c1,c2} c2, the linearizations of h are 〈c3, c1, c2, c4〉,



〈c3, c1, c4, c2〉, 〈c3, c4, c1, c2〉, and 〈c4, c3, c1, c2〉.
Let us define graph intersection such that V (g1 ∩ g2) =

V (g1) ∩ V (g2) and E (g1 ∩ g2) = E (g1) ∩E (g2), and graph
union such that V (g1 ∪ g2) = V (g1)∪V (g2) and E (g1 ∪ g2) =
E (g1)∪E (g2). Then, we say that g is a vertex-induced sub-
graph of g′ if and only if V (g) ⊆ V (g′), and for every
e ∈ E (g′), if both endpoints of e are in V (g), then e ∈ E (g).
Define two graphs g1 and g2 as compatible if and only if
g1 ∩ g2 is a vertex-induced subgraph of g1 ∪ g2.

Lemma 1. Assume that l1 and l2 are linearizations of two
compatible dependency graphs g1 and g2, respectively, and that
if c1, c2 ∈ V (g2) are a pair of non-commutative commands,
then either (c1, c2) ∈ E (g2) or (c2, c1) ∈ E (g2). Then we
have that: (a), ⊥• l1 and ⊥• l2 are compatible c-structs; (b),
if c1 = c2 then ⊥ • l1 = ⊥ • l2.

Definition 1. c-struct (mp) = ⊥•l, where l is a linearization
of gp.

By lemma 1(b), l exists and is unique, therefore c-struct (mp)
is well-defined.

2.4 Correctness
Lemma 2. g1p, the graph gp at any time t1, and g2q , the
graph gq at any time t2, are compatible.
Theorem 1. The consistency property of generalized con-
sensus always holds.

From lemma 2 and property S2, g1p and g2q satisfy the
premises of lemma 1. Therefore we get that c-struct (mp) at
time t1 and c-struct (mq) at time t2 are compatible.
Theorem 2. If a command c which is GC-proposed is then
repeatedly GC-proposed, then a c-struct containing c is even-
tually decided.

The properties L1 and L2 ensure that dependency sets are
repeatedly proposed for c to the map-agreement algorithm
as long as a commit is not observed. Moreover, the map-
agreement algorithm ensures that when dependency sets
are repeatedly proposed for c, then a dependency set will
eventually be committed for c. Similarly, any dependency
of c is eventually committed and c becomes executable, at
which points it is included in the next decided c-struct.

2.5 Implementing the Abstractions
Both the dependency-set and map-agreement abstractions

are well suited for leaderless implementations.
The Dependency-Set Abstraction. The dependency-

set abstraction can be implemented as shown in fig. 2. Due
to space constraints, our example focuses on satisfying the
safety property only. A process p announcing a command c
asks all the processes for the set of commands c′ that they
have seen so far and that do not commute with c (noted
c′ � c). Then, it suggests the union of the dependency
sets received from a quorum of processes. Quorums are sets
of processes such that the intersection of any two quorums
is not empty. Since p receives sets of commands seen by
other processes, the implementation ensures S1. Moreover,
consider two suggestions suggest (c1,D1) and suggest (c2,D2)
where c1 � c2. There are two quorums Q1 and Q2 such that
D1 was computed from Q1 and D2 was computed from Q2.
By the definition of quorums, there is a process q belonging
to both Q1 and Q2. This process q received either c1 before
c2, in which case c1 ∈ D2, or c2 before c1, in which case
c2 ∈ D1. Therefore, property S2 holds.

The Map-Agreement Abstraction. A state-machine
replication algorithm like MultiPaxos [4] can implement the
map-agreement algorithm by uniquely associating commands
with positions in its sequence of consensus instances. How-
ever, MultiPaxos provides unnecessary guarantees on the
ordering among instances. Instead, one can uniquely asso-
ciate one incarnation of MultiPaxos with each process, which
is initially the leader of its MultiPaxos incarnation. We
assume that a command is associated with a unique natu-
ral number id (c) and with the process who first received c,
noted pid (c). A process receiving a proposal proposep (c,D)
proposes c 7→ D in instance id (c) of the MultiPaxos incarna-
tion of process pid (c). Upon a MultiPaxos decision c 7→ D′,
p calls commitp (c,D′). Note that the initial proposer of a
command, being the MultiPaxos leader of its MultiPaxos
incarnation, is free to choose any quorum of processes to
reach agreement with on a dependency set. Therefore, in
a geo-replication setting, the initial proposer can choose a
quorum of processes excluding those nodes that are too far
away. In a failure-free case, a command is committed in one
round-trip with the chosen quorum.

EPaxos improves upon this scheme by using an algorithm
similar to Fast Paxos [2] instead of MultiPaxos, and by
combining the dependency-set algorithm of fig. 2 (except
that it uses larger quorums), with a fast round of Fast Paxos:
the reception of identical dependency sets from a fast quorum
of processes (after an announcep (c)) acts as a single-round-
trip decision of Fast Paxos.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under grant CNS-1523558, and by the US
Air Force Office of Scientific Research under grant FA9550-
15-1-0098.

References
[1] Martin Biely et al. “S-Paxos: Offloading the Leader for

High Throughput State Machine Replication”. In: SRDS.
IEEE Computer Society, 2012, pp. 111–120.

[2] Leslie Lamport. “Fast Paxos”. In: Distributed Computing
19.2 (2006), pp. 79–103.

[3] Leslie Lamport. Generalized Consensus and Paxos. https:
//research.microsoft.com/en-us/um/people/lamport/
pubs/pubs.html#generalized. 2005.

[4] Leslie Lamport. “Paxos made simple”. In: ACM Sigact
News 32.4 (2001), pp. 18–25.

[5] Yanhua Mao et al. “Mencius: Building Efficient Repli-
cated State Machine for WANs”. In: OSDI. Ed. by
Richard Draves and Robbert van Renesse. USENIX
Association, 2008, pp. 369–384.

[6] Iulian Moraru et al. “There is more Consensus in Egali-
tarian Parliaments”. In: SOSP. Ed. by Michael Kaminsky
and Mike Dahlin. ACM, 2013, pp. 358–372.

[7] Alexandru Turcu et al. “Be General and Don’t Give Up
Consistency in Geo-Replicated Transactional Systems”.
In: OPODIS. Ed. by Marcos K. Aguilera et al. Vol. 8878.
LNCS. Springer, 2014, pp. 33–48.

https://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html#generalized
https://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html#generalized
https://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html#generalized

	Introduction
	Leaderless Generalized-Consensus Algorithms
	Computing Potential Dependency Sets
	Agreeing on Dependency Sets
	Local Dependency-Graph Processing
	Correctness
	Implementing the Abstractions


