
Asynchrony-Resilient Sleepy
Total-Order Broadcast

Protocols
Francesco D’Amato

Ethereum Foundation
Luca Zanolini

Ethereum Foundation
Giuliano Losa

Stellar Development Foundation

1

Dynamically-available protocols tolerate large-scale
correlated (benign) failures in blockchains networks

2

This means protocols that:

● Have a known list of participants
● But, can tolerate participants unpredictably going offline at any time (and even

99% of them)
● Also tolerate malicious (Byzantine) failures

Dynamically-available protocols are deployed in e.g. the Ethereum and Cardano
blockchains

● Ethereum promotes the use of diverse software
implementations to avoid correlated failures

● But, in May 2023, a bug affected two
implementations (Prysm+Teku) and roughly 60% of
the participants went offline for 25 minutes

● The system kept working and applications were not
affected

● Traditional BFT consensus uses fixed-sized
quorums and would get stuck if > ⅓ crash

3

Consensus implementations on Ethereum

Source: https://clientdiversity.org/#distribution

Example in the wild: software bug in Ethereum

The sleepy model* captures key aspects of dynamic
availability

● Participants are known but, each round,
some may be offline

● Synchronous, reliable network
○ Message delay < 1 round

● Each round, less than a fraction β of the
online participants are malicious

○ Adversary is constant or growing
● In practice, Ethereum uses real-time

intervals of 12 seconds

4

Example with β=1/2

*Rafael Pass and Elaine Shi. "The sleepy model of consensus." Advances in Cryptology–ASIACRYPT 2017

4

Drawback: the safety of dynamically-available protocols
depends on synchrony
● All safety guarantees are lost if the network is not synchronous

○ Dynamically-available protocols use relative thresholds
○ Intersection arguments depend on messages from all well-behaved participants being reliably

received by all
● In general, this is expected: eventually-synchronous, dynamically available

consensus is impossible
See Theorem 7.2 in: Lewis-Pye Roughgarden, Permissionless Consensus. arXiv preprint arXiv:2304.14701

5

Contribution: methodology to modify existing protocols to
survive bounded periods of unreliable communication

Poor solution: slow down the protocol

● Use an extremely conservative round
duration, e.g. not 12 seconds but 1 minute

● This slows down the protocol proportionally
to the increase in round duration

E.g. 12 seconds to 1 minute: 5x slowdown

This paper

● Keep round duration the same to maintain
performance

● Accept that, in rounds occurring during
asynchronous periods, message delivery may
be fully adversarial

● Modify existing protocols to keep them safe
during asynchronous rounds

6

The sleepy model with an asynchronous period

synchronous
 round rₐ

asynchronous
 round rₐ+1

synchronous
 round rₐ+3

asynchronous
 round rₐ+2

7

● We assume a single asynchronous period spanning rounds [rₐ+1,rₐ+π]
● Message delivery in asynchronous rounds is fully under adversarial control

Examples with π=2:

Goal: Asynchrony-resilient Total-Order Broadcast

8

Asynchrony-resilience conditions

During asynchrony ([rₐ+1,rₐ+π])

● Delivered logs may conflict
● Processes that were online in rₐ do not

revert any log delivered before rₐ
● No progress guarantees

After asynchrony (rₐ+π+1 and after)

● Newly delivered logs extend the logs
delivered before rₐ

● Newly delivered logs never conflict
● Progress guarantees resume

Total order broadcast

Processes add blocks to a growing sequence
called a log. They deliver growing logs

Safety: for every two delivered logs, one is a
prefix of the other

Liveness: if all processes get a block b as input,
then (with non-zero probability) eventually a log
containing b is delivered

Example: ⅓-resilient total-order broadcast with the MMR protocol

Key observation: processes vote for logs and take
action based only on votes cast in the previous round

In some sense, votes “expire” after one round

1: time (2k+1)Δ:
2: receive votes sent at time 2kΔ
3: vote for maximal log with > ⅔ support
4: propose extension of a maximal log with >
⅓ support

5: time (2k+2)Δ:
6: receive votes sent at time (2k+1)Δ
7: deliver maximal log with > ⅔ support
8: vote for a proposal* extending a maximal
log with > ⅓ support

*a probabilistic scheme ensures that all well-behaved processes
extend the same “good” log with probability 1/3

9

We make MMR asynchrony-resilient using a
vote-expiration period of η≥1 rounds

Protocol modifications

● We change how processes count votes
● For each process, we count the latest vote it

cast no later than η rounds ago
○ i.e. votes expire only after η rounds
○ In vanilla MMR we have η=1

● The protocol otherwise remains unchanged

If η>π, we achieve asynchrony-resilience

Older votes prevent reverting logs delivered before
asynchrony (assuming limited adversarial growth)

Possible disagreement on new blocks added during
asynchrony, but

Normal protocol operation resumes after
asynchrony (if enough processes stick around)

10

There’s a catch: the expiration period reduce resilience during
synchrony

Drop-off rate γ: fraction of the well-behaved processes that were
online during the expiration period and are no longer online

Resilience decreases with the drop-off rate: above the line, safety
violations are possible

With a drop-off rate > ⅓, we lose adversarial resilience

Intuitively: the adversary can use stale messages to its advantage,
and so we must count stale messages as adversarial

11

1/3

1/30
0

resilience β

safe region

unsafe region
β

drop-off rate γ

If the drop-off rate cannot exceed ⅓ even during
synchrony, have we not lost dynamic availability?

Not really! If the drop-off rate exceeds ⅓ then

● We are still safe if there is adversarial behavior
● We lose safety under adversarial behavior but:

○ Older votes prevent reverting logs delivered
before the drop-off event

○ The protocol recovers after the expiration period
○ Safety-sensitive applications can choose to wait

out the expiration period
● We temporarily lose progress guarantees

12

1/3

1/30
0

resilience β

safe region

unsafe region
β

drop-off rate γ

Asynchrony-resilient MMR achieves a new tradeoff

Dynamically-available consensus

Tolerates arbitrarily fluctuating
participation (even 99%)

Only safe under synchrony

13

Partially-synchronous consensus

A fixed number of processors
must remain available (e.g. 2f+1)

Safe during asynchrony

Asynchrony-resilient MMR

Live under arbitrarily fluctuating
participation

Delivered prefixes are safe for η
asynchronous rounds

During synchrony, full safety only
under bounded drop-offs or no
adversarial behavior

The protocol recovers safety and
liveness after η “good” rounds

Conjecture: the methodology applies to most existing
dynamically-available protocols

Including:

● Momose and Ren. Constant Latency in Sleepy Consensus. CCS 2022.
● Malkhi, Momose, and Ren. Towards Practical Sleepy BFT. CCS 2023.
● Losa and Gafni. Brief Announcement: Byzantine Consensus Under Dynamic

Participation with a Well-Behaved Majority. DISC 2023
● D’Amato and Zanolini. Streamlining Sleepy Consensus: Total-Order Broadcast with

Single-Vote Decisions in the Sleepy Model. Arxiv:2310.11331
● D’Amato and Zanolini. Recent Latest Message Driven GHOST: Balancing Dynamic

Availability With Asynchrony Resilience. arXiv:2302.11326

14

