
Brief Announcement: Understanding 
Read-Write Wait-Free Coverings in the 

Fully-Anonymous Shared-Memory Model
Giuliano Losa, Stellar Development Foundation

Eli Gafni, UCLA



What can we compute wait-free in the fully-anonymous 
shared memory model?

● Processors are anonymous
○ All run the same program and do not know their 

ID
● Memory is anonymous: 

○ Processors are wired to atomic read/write 
registers in an arbitrary way

○ Processors do not know how they are wired
● Main difficulty: not knowing where they write, 

processors can hardly avoid overwriting each other
○ E.g. obstruction-free consensus is impossible 

with less than N registers



What can we compute wait-free in the fully-anonymous 
shared memory model?

● Processors are anonymous
○ All run the same program and do not know their 

ID
● Memory is anonymous: 

○ Processors are wired to atomic read/write 
registers in an arbitrary way

○ Processors do not know how they are wired
● Main difficulty: not knowing where they write, 

processors can hardly avoid overwriting each other
○ E.g. obstruction-free consensus is impossible 

with less than N registers



Why? We think it is interesting to investigate what remains 
computable when we remove common assumptions

There are at least a few other authors and reviewers that (presumably) think so too:

● Gadi Taubenfeld. Anonymous shared memory, JACM, 2022
● Raynal and Taubenfeld. Fully anonymous consensus and set agreement algorithms, 2021
● Raynal and Taubenfeld. Mutual exclusion in fully anonymous shared memory systems
● Imbs, Raynal, Taubenfeld, and Parter. Election in Fully Anonymous Shared Memory 

Systems: Tight Space Bounds and Algorithms, SICC, 2022
● Aghazadeh, Imbs, Raynal, Taubenfeld, Woelfel. Optimal Memory-Anonymous Symmetric 

Deadlock-Free Mutual Exclusion, PODC, 2019
● Godard, Imbs, Raynal, Taubenfeld. From Bezout's Identity to Space-Optimal Election in 

Anonymous Memory Systems, PODC, 2020



Consider this simple program:

i := 1

view := {input}

while true:

read all the registers

view := view ∪ (values read)

write view to port i

i := i+1

Despite reading and writing forever, 
there are executions where some 
processors never see each other































{v₁,v₂}

{v₁}
{v₁,v₃}

stable view graph



We prove that there always is a minimum stable view

{v₁}
{v₁,v₃}

{v₂}

{v₁,v₂}
{v₁,v₂}

{v₁}
{v₁,v₃}

stable view graph



Contributions
1. How to make sense of colored tasks like renaming in an anonymous model? 

We propose using group-solvability (Gafni 2004)
2. Stable-view graphs have a unique source
3. We solve the snapshot task (a.k.a. lattice agreement) wait-free using N 

registers
4. Using snapshots, we solve wait-free (group) renaming and obstruction-free 

consensus using N register

Characterize the set of tasks that are (group-)solvable under full anonymity

Open question


