Brief Announcement: Understanding
Read-Write Wait-Free Coverings in the
Fully-Anonymous Shared-Memory Model

Giuliano Losa, Stellar Development Foundation
Eli Gafni, UCLA

What can we compute wait-free in the fully-anonymous
shared memory model?

CPU

e Processors are anonymous
o All run the same program and do not know their

ID
e Memory is anonymous: /

o Processors are wired to atomic read/write
registers in an arbitrary way

o Processors do not know how they are wired 'I:":":":I‘ “:":":":lc »[":":":H

MTTRYTITIT | MTTRYTITIT | MTTRYTITIT
register X regqgister Y regqister Z

What can we compute wait-free in the fully-anonymous
shared memory model?

e Processors are anonymous] CXU [] CEU N
o All run the same program and do not know their 1..5 F 1..5 F

ID
e Memory is anonymous:
o Processors are wired to atomic read/write
registers in an arbitrary way
o Processors do not know how they are wired , ‘ } i
e Main difficulty: not knowing where they write, [":":":I [":":":I‘ '[":":":I
processors can hardly avoid overwriting each other lwnuunl boauad buanooud

o E.g. obstruction-free consensus is impossible ~ register X registerY register Z
with less than N registers

Why? We think it is interesting to investigate what remains
computable when we remove common assumptions

There are at least a few other authors and reviewers that (presumably) think so too:

Gadi Taubenfeld. Anonymous shared memory, JACM, 2022

Raynal and Taubenfeld. Fully anonymous consensus and set agreement algorithms, 2021
Raynal and Taubenfeld. Mutual exclusion in fully anonymous shared memory systems
Imbs, Raynal, Taubenfeld, and Parter. Election in Fully Anonymous Shared Memory
Systems: Tight Space Bounds and Algorithms, SICC, 2022

Aghazadeh, Imbs, Raynal, Taubenfeld, Woelfel. Optimal Memory-Anonymous Symmetric
Deadlock-Free Mutual Exclusion, PODC, 2019

Godard, Imbs, Raynal, Taubenfeld. From Bezout's Identity to Space-Optimal Election in
Anonymous Memory Systems, PODC, 2020

Consider this simple program: Despite reading and writing forever,
i :=1 there are executions where some

view := {input} processors never see each other

while true:
read all the registers
view := view U (values read)
write view to port 1

i := 1+1

Actions

Post State

p1 writes twice and
ends with a scan

view(ps]

{3}

Post State

sgHons ri ry r3 view[p1] | view[p:] | view[ps]
ites twi d

endswihasan | U | W | @ | @ | @& | @

P2 writes then scans m {1} {1} {1} , {3}

Actions

Post State

ri ry r3 view[p1] | view[p:] | view[ps]
P e o @ | @w | o @ | e
p» writes then scans {2} {1} {1} {1} {1,2} (3}
fren scans oo | ol o] oy

Actions Post State

3! r2 r3 view[p1] | view[p,] | view[ps]
Pdwihasan | 0 | W @ w e | e
p» writes then scans {2} {1} {1} {1} {1,2} {3}
fhen scans B | m | o | m | ey | ny
fﬁeiviixs“es B I 1} I {1} {1} {1} {1,2} {1,3}

Post State

. I 1 rs view[p1] | view[p:] | view[ps]
Sl
p» writes then scans {2} {1} {1} {1} {1,2} {3}
fhen scans B | m | o | m | ey | ny
fﬁ&fﬁﬁt“ B 1} {1} {1} {1} {1,2} {1,3}
p» writes then scans {1} {1} {1} {1,3}

Actions

Post State

ri rs r3 view[p1] | view[p:] | view[ps]
Pdwiasen | V| W w | w | & | ©®
p» writes then scans {i} {1} {1} {1} {1,2} {3}
B R [T GV S A Y S I CV N O S O
i oveow Leape W | oW w | W | | a3
p» writes then scans {1} {1,2} {1} {1} {1,2} {1,3}
p3 overwrites p; (1} w (1} (1} (1,2} I (1,3} I

then scans

Actions

Post State

ri rs rs view[p1] | view[p:] | view[ps]

Dt 0w || @ e | o

p2 writes then scans {i} {1} {1} {1} {1,2} (3}

fhen scans B | m | o | m | ey | ny
fﬁ&fﬁﬁfes B {1} {1} {1} {1} {2} | {13}
p» writes then scans {1} {1,2} {1} {1} 1,2} {1,3}
fﬁeivﬁifrffes he {1} 1,3} {1} {1} {12} | {13}
p1 overwrites p; (1} (1) (1) (1) (1.2) (1.3}

then scans

Post State

Actions ' 2 r3 view[py] | view[p,] | view[ps]
ites twi d

D ewihasen | O | | @ | @ | @& | ®

p» writes then scans {2} {1} {1} {1} {1,2} {3}
it

then scans B w | w | m | ey | oy
it

ben i W | o | | o | ey | as

p2 writes then scans {1} {1} {1} {1,2} {1,3}
it

fﬁeivfifrf; op {1} {1} {1} {1,2} {1,3}

p1 overwrites ps

then scans {1} {1}

p2 writes then scans {1}

Actions

Post State

then scans

ri rs r3 view[p1] | view[p:] | view[ps]

D e 0w | @ | @ | e | e
p2 writes then scans {i} {1} {1} {1} {1,2} (3}
fhen scans B | m | o | m | ey | ny
fﬁeiviixs“es B 1} {1} {1} {1} {1,2} {1,3}

p2 writes then scans {1} {1} 1,2} {1,3}
hem scams {1} {1} {2} | {13}
fﬁ&fﬁﬂfes ” {1 {1} (L2} | {13}

p2 writes then scans {1} {1} {1,2} {1,3}

p3 overwrites p, (1) (1) (1.2}

Post State

Actions r r r3 view|[py] | view[p,] | view[ps]
p1 writes twice and

. ends with a scan { ﬁ {1} {1} {2} {3}

2 | pp writes then scans {2} {1} {1} {1} {1,2} {3}
p3 overwrites p,

¥ | Hhenscans 3} {1} {1} {1} {12} {1,3}
p1 overwrites p3

* | then scans 1} {1} {1} {1} {1,2} {1,3}

5 | pp writes then scans {1} {1} {1,2} {1,3}
p3 overwrites p»

S | then scans {1} {1} {1.2} {1,3}
p1 overwrites ps

Al | — {1} {1} {1,2} {13}

8 | p2 writes then scans {1} {1} {1,2} {1,3}
p3 overwrites p,

? then scans {1} {1,2} {1,3}

10 p1 overwrites p3 (1} (1,2) (1.3)

then scans

Post State

Actions ' r2 r3 view[py] | view[p,] | view[ps]
p1 writes twice and

. ends with a scan {} ﬁ & {1} {2} {3}

2 | pp writes then scans {2} {1} {1} {1} {1,2} {3}
p3 overwrites p,

¥ | Hhenscans 3} {1} {1} {1} {1,2} {1,3}
p1 overwrites p3

* | then scans 1} {1} {1} {1} {1,2} {1,3}

5 | pp writes then scans {1} {1} {1} {1,2} {1,3}
p3 overwrites p»

I [e — {1} {1} {1} {1,2} {1,3}
p1 overwrites ps

Al | — {1} {1} {1,2} {13}

8 | p2 writes then scans {1} {1} {1,2} {1,3}
p3 overwrites p;

| e {1} {1} {1} {1,2} {1,3}
p1 overwrites ps3

1 then scans {1}

11 | p, writes then scans

Post State

Actions I ry r3 view([pq] | view([pz] | view|[ps]
p1 writes twice and

L | endswitkeasean {1} {2} {3}

2 | p, writes then scans {1} {1,2} {3}
p3 overwrites p,

ol [— {1} {12} {1,3}
p1 overwrites p3

. then scans {1} {1,2} {1,3}

5 | pp writes then scans {1} {1,2} {1,3}
p3 overwrites p»

I [e — {1} {1,2} {1,3}
p1 overwrites ps

Al | — {1} {1,2} {1,3}

8 | p2 writes then scans {1} {1,2} {1,3}
p3 overwrites p,

? then scans {1} {1,2} {1,3}
p1 overwrites ps3

10 | then scans {1} {1,2} {1,3}

11 | p, writes then scans {1} {1,2} 1.3

12 | P3 overwrites p; 1 1.3]

then scans

Actions Post State
Ehe ri rs r3 view[p1] | view[p:] | view[ps]

p1 writes twice and

. ends with a scan U ﬁ ﬁ {1} {2} {3}

2 | pp writes then scans {2} {1} {1} {1} {1,2} {3}
p3 overwrites p,

¥ | Hhenscans 3} {1} {1} {1} {1,2} {1,3}
p1 overwrites p3

* | then scans 1} {1} {1,2} {13}

5 | pp writes then scans {1} {1} {1,2} {1,3}
p3 overwrites p»

I [e — {1} {1} {1,2} {1,3}
p1 overwrites ps

Al | — {1} {1} {1,2} {13}

8 | p2 writes then scans {1} {1} {1,2} {1,3}
p3 overwrites p,

? then scans {1} {1} {1,2} {1,3}
p1 overwrites ps3

10 | then scans {1} {1} {1.2} {1,3}

11 | p, writes then scans {12} {1} {1,2} {1,3}
p3 overwrites p»

12 | then scans {13} {1} {1} {1} {1,2} 11:3}

13 p1 overwrites ps (1} (1} (1) (1.2} (1.3)

then scans (same as 4)

Post State

Actions I ry r3 view([pq] | view([pz] | view|[ps]
p1 writes twice and

V| endswitheasean {1} {2} {3}

2 | p, writes then scans {1} {1,2} {3}
p3 overwrites p,

ol [— {1} {12} {1,3}
p1 overwrites p3

4 then scans {1} {1,2} {1,3}

5 | pp writes then scans {1} {1,2} {1,3}
p3 overwrites p»

I [e — {1} {1,2} {1,3}
p1 overwrites ps

Al | — {1} {1,2} {1,3}

8 | p2 writes then scans {1} {1,2} {1,3}
p3 overwrites p,

2 then scans {1} {1,2} {1,3}
p1 overwrites ps3

10 | then scans {1} {1,2} {1,3}

11 | p, writes then scans {1} {1,2} {1,3}
p3 overwrites p»

12 | then scans {1} {1,2} {13}

13 p1 overwrites p3 {1} {1, 2} {1’ 3}

then scans (same as 4)

Post State

Actions

ri rs r3 view[p1] | view[p:] | view[ps]
p, writes twice and s g
stable view graph
{V1,V2}
{vi}
™~ {V1,V3}
then scans i : — ’ D 7
11 | p, writes then scans {1} {1} {1} {1,2} {1,3}
p3 overwrites p»
12 | then scans {1} {1} {1} {1,2} 11:3}
13 p1 overwrites p3 (1} (1} (1} (1,2} (1,3)

then scans (same as 4)

Acti Post State
SR ri rs r3 view[p1] | view[p:] | view[ps]
P1 writes twice and I (41 (41 (4 (a2 (n)
We prove that there always is a minimum stable view
stable view graph
{V1,V2}
{vi}
™~ {V1,V3}
THen scans ==
11 | p, writes then scans {1} {1} {1} {1,2} {1,3}
p3 overwrites p»
12 | bo Overwr W | o | @ ey | 0
13 p1 overwrites p3 (1} (1} (1} (1,2} (1,3)

then scans (same as 4)

Contributions

1. How to make sense of colored tasks like renaming in an anonymous model?

We propose using group-solvability (Gafni 2004)
2. Stable-view graphs have a unique source
3. We solve the snapshot task (a.k.a. lattice agreement) wait-free using N

registers
4. Using snapshots, we solve wait-free (group) renaming and obstruction-free

consensus using N register

Open question

Characterize the set of tasks that are (group-)solvable under full anonymity

