
Making Fast Consensus Generally Faster
[Technical Report]

Sebastiano Peluso
Virginia Tech
peluso@vt.edu

Alexandru Turcu
Virginia Tech
talex@vt.edu

Roberto Palmieri
Virginia Tech

robertop@vt.edu

Giuliano Losa
Virginia Tech

giuliano.losa@vt.edu

Binoy Ravindran
Virginia Tech
binoy@vt.edu

Abstract—New multi-leader consensus protocols leverage the
Generalized Consensus specification to enable low latency, even
load balancing, and high parallelism. However these protocols
introduce inherent costs with significant performance impact:
they need quorums bigger than the minimum required to solve
consensus, and need to track dependency relations among pro-
posals. In this paper we present M2PAXOS, an implementation of
Generalized Consensus that provides fast decisions (i.e., delivery
of a command in two communication delays) by leveraging
quorums composed of a majority of nodes, and by exploiting
workload locality. M2PAXOS does not establish command de-
pendencies based on conflicts, but it maps nodes to accessed
objects, enforcing that commands accessing same objects are
ordered by the same node. Our experimental evaluation confirms
the effectiveness of M2PAXOS, gaining up to 7× over state-of-
the-art Consensus and Generalized Consensus algorithms under
partitioned data accesses, and up to 5.5× using the TPC-C
workload.

I. INTRODUCTION

Paxos [1] is an algorithm for solving the consensus prob-
lem [2] in an asynchronous network, even in the presence of
crashes, and is often used to build strongly consistent and
fault-tolerance distributed services. In particular, Paxos can
be leveraged for implementing practical strongly consistent
and fault-tolerant transactional systems ([3], [4], [5], [6])
such as Google’s Spanner [3]. Despite its widespread use,
Paxos suffers from performance bottlenecks when deployed
on networks with large amounts of nodes. For example, in
its widely adopted and more practical deployment, i.e., Multi-
Paxos [7], there is a designated leader which is responsible for
ordering received commands, and allows the implementation
of consensus in as few as three communication delays in crash-
free executions. However, in practice, that leader constitutes a
bottleneck that limits the performance of the whole system.

Several recent algorithms ([8], [9], [10]) eliminate the bot-
tleneck constituted by the unique leader by allowing multiple
nodes to operate as leaders at the same time. If this, on the
one hand, gives the opportunity to balance the load and avoids
a single point of decision (i.e., a designated leader), on the
other hand it introduces the potentially high cost of handling
contention among the various leaders issuing proposals con-
currently. For example, EPaxos [8], a recent multi-leader con-
sensus algorithm, employs four communication delays in order
to safely decide a proposed command in case of contention.

To reduce the chances of contention among leaders, a com-
mon approach adopted by multi-leader algorithms is to relax
the consistency requirement of Consensus, which demands that
at most one proposal can be decided in a Consensus instantia-
tion, by allowing that multiple proposals can be decided at the

same time as long as their contents are not conflicting, i.e., they
are commands whose executions commute according to the ap-
plication semantics. This approach implements a more general
variant of Consensus, called Generalized Consensus [11], [12],
which has been proved to be sufficient for providing strong
consistency in replicated services, since the outcome of the
execution of a sequence of commutable commands on different
nodes is independent of the order they are executed [11].

However, the advantages of Generalized Consensus im-
plementations come at the cost of requiring synchronous
communication with a larger set of nodes, additional compu-
tation for discriminating whether proposals are dependent, i.e.,
conflicting, or not, and bigger messages in order to include in-
formation about dependencies among proposals. Indeed, these
algorithms reduce the minimum number of communication
delays required to take a decision for one command from three
to two in the absence of conflicts, but, to safely decide in
two communication delays, a leader must communicate with a
fast quorum of nodes [13], whereas Multi-Paxos needs only to
communicate with a smaller classic quorum of nodes. Classic
quorums are often composed of

⌊
N
2

⌋
+ 1 nodes, where N

is the total number of nodes, whereas fast quorums must be
composed of at least

⌊
2·N

3

⌋
+1 nodes. Thus, Generalized Con-

sensus algorithms and (Multi-)Paxos choose different tradeoffs
between size of quorums and communication delays. More-
over, current Generalized Consensus algorithms must compute
dependency relations among commands, a potentially costly
operation, and must exchange them among nodes, generating
a higher bandwidth usage. In contrast, (Multi-)Paxos does not
use dependency relations at all.

Existing theoretical results on the cost of implementing
consensus [14] prove that one cannot achieve an optimal
tradeoff which combines both the adoption of classical quo-
rums and decisions in two communication delays in all the
possible executions; also it is not known whether the costs
associated with having dependency relations can be avoided. In
this paper we circumvent this restrictions by investigating the
feasibility of having minimal size of quorums, low delay, and
no dependency relations under common application workloads.
In other words, we aim at answering the following question:
can we guarantee a generally faster performance at the cost
of having a slightly more expensive decision process only
in case the application exhibits unfavorable access patterns?
Our contribution proves that under a workload in which two
different nodes do not often propose conflicting commands,
which is common in scalable transactional systems [15], [16],
[17], one can combine the advantages of multi-leader Gener-
alized Consensus algorithms and Multi-Paxos, i.e., obtaining
load balancing among nodes, a high proportion of decisions in

two communication delays, the adoption of classic quorums,
and no dependency relations to compute or exchange.

We present M2PAXOS1, an implementation of Generalized
Consensus that generally, which in this paper means under
favorable conditions of low inter-node contention and temporal
locality, where a node likely issues commands on objects
already accessed in the past, provides the following optimal
features: M2PAXOS decides commands in only two communi-
cation delays; it does not compute dependencies on commands,
and hence it does not exchange dependencies among nodes; it
relies on classic quorums of size equal to

⌊
N
2

⌋
+1, like Multi-

Paxos. We name the aforementioned workload as partitionable.

Underlying M2PAXOS lies the following observation:
Generalized Consensus algorithms conservatively use fast quo-
rums and dependency relations because they must recover
when interfering commands are ordered differently by some
nodes after an attempted fast decision. However, if we can
prevent different nodes from issuing conflicting commands,
then we can reduce the inherent costs of those algorithms.

M2PAXOS is designed exploiting the above intuition: it
ensures that conflicting commands are ordered in the same way
in all nodes by requiring that, on the proposal of a command
c, a leader first acquires the exclusive ownership of all the
commands interfering with c, called the interference set of c,
before trying to decide c. Acquiring exclusive ownership of
interference sets prevents contention among different leaders:
any two conflicting commands will be either ordered by a
unique leader, namely their owner, or they will be separated
by a change of ownership. Once the ownership of interference
sets is stable in the system, commands can be ordered in two
message delays in parallel in case they are assigned to different
leaders. To simplify the ownership acquisition, we assume that
the semantics of the commands is given in terms of the set of
objects that they access. Therefore, we can over-approximate
the interference set of a command c by the set of all commands
which access at least one object accessed by c as well.

To implement exclusive object ownership, M2PAXOS
adapts the mechanism used by Multi-Paxos to ensure that
there is only one leader at a time: M2PAXOS can be seen
as running one incarnation of Multi-Paxos per object, under
the restriction that a node only accepts a command c if it can
do so in all incarnations of Multi-Paxos corresponding to c’s
accessed objects. Thus, a node successfully orders a command
c only if it is the leader, in the sense of Multi-Paxos, of all
the incarnations corresponding to the objects accessed by c.

M2PAXOS manages object ownership to order a command
c as follows: i) if the proposer of c has the ownership of all
the objects accessed by c, it orders c as the next command to
execute on those objects, in two communication delays; ii) if
the proposer of c does not have the necessary ownerships for
c, but there is another node that has them, then M2PAXOS
forwards c to that node, thus adding one communication delay
to the previous case; and iii) in all the other cases, the node
proposing c first acquires the ownership of c’s objects in all
the incarnations of Multi-Paxos corresponding to the objects
accessed by c, using the same mechanism as Multi-Paxos, and
then performs step i).

1A poster version of this paper recently appeared. Its venue has been hidden
to respect the double blind rules, as indicated by the DSN Program Chairs.

M2PAXOS is particularly effective in deployments where
the set of accessed objects is well defined once a “home” object
is accessed, e.g., the access pattern of the well known TPC-C
benchmark [18] involves first an access to a warehouse (i.e.,
the home object) and then the subsequent accessed objects will
be very likely related to that warehouse.

We implemented M2PAXOS in the Go programming lan-
guage and compared against Generalized Paxos [11], Multi-
Paxos [7], and EPaxos [8], a recent high performance im-
plementation of generalized consensus. M2PAXOS is simple:
there is no time consuming operation performed on its critical
path and it scales well in partitioned workloads. Once the
ownership is defined and is stable, M2PAXOS substantially
outperforms all competitors. The maximum speed-up observed
against EPaxos, which is the best competitor, is 7× when 49
nodes are deployed and objects are partitioned across them. We
evaluated M2PAXOS also by implementing a benchmark pro-
ducing the TPC-C workload. In this deployment, M2PAXOS
outperforms EPaxos by as much as 5.5× and Multi-Paxos by
as much as 2.5×.

The implementation of M2PAXOS is publicly available
and a link to the sources will be disclosed once the anonymous
review period is over. Moreover, we have formalized a high
level description of M2PAXOS in TLA+ [19] and have model-
checked it with the TLC model-checker, obtaining high con-
fidence that our protocol is correct. The TLA+ formalization
can be found in the appendix.

II. RELATED WORK

In the classic Paxos algorithm, a value is learned after a
minimum of four communication delays. Progress guarantees
are provided as long as there are no two nodes trying to become
leaders concurrently (this step is called Prepare phase). Multi-
Paxos alleviates this problem by letting a Prepare phase cover
an entire sequence of values. This effectively establishes a
proposer that acts as a designated leader. Once the leader is
elected, new values can be learned in only three communi-
cation delays, and progress can be guaranteed in periods of
synchrony. Fast Paxos [13] can eliminate one communication
delay by having proposers bypass the leader and broadcast
their requests directly to nodes, which is called a fast path. If
a fast path fails due to concurrent proposals (called a collision),
the designated leader needs to take over the decision by adding
two additional communication delays. Moreover, acceptors in
Fast Paxos have to wait for a number of replies that is greater
than a majority of nodes in the fast rounds (a minimum of⌊

2·N
3

⌋
+ 1, a fast quorum).

Generalized Paxos [11] solves Generalized Consensus and,
as Fast Paxos, it can decide commands in two communication
delays. Unlike Fast Paxos, it can do that also in the case of
concurrent proposals as long as commands are commutative.
If not, a recovery from a collision scenario requires the same
costs paid by Fast Paxos. This overhead is avoided by the
Fast Genuine Generalized Consensus (FGGC) algorithm [20],
which is able to reduce the extra communication delays for
the recovery from four to one by leveraging the following
assumption: every fast quorum in a round has to include the
leader of that round. FGGC is optimized to provide reasonable
performance also in case of high and non-well-partitioned

contention scenarios (unlike M2PAXOS), but it may suffer
from higher latency because nodes have to wait for the leader
in all rounds.

EPaxos [8] is a multi-leader solution to the generalized
consensus problem. EPaxos employs dependency tracking and
fast quorums to deliver non-conflicting commands using a fast
path of two communication delays. In the presence of conflicts
however, the protocol takes a slow path of four communication
delays before delivering.

The advantages of M2PAXOS over the previous Paxos-
based algorithms are clear: M2PAXOS is able to decide
commands in two communication delays, as they do, but
without relying on either fast quorums, a designated leader, or
exchanging and processing dependencies among commands.

M2PAXOS is also related to the Asynchronous Lease-
based Certification protocol (ALC) [21] and LILAC-TM pro-
tocol [22] because they share the basic idea of exploiting
ownership of objects to save communication steps during a
distributed coordination. As we will show in Section IV-C,
ALC and Lilac-TM address orthogonal problems whose solu-
tions can be integrated in M2PAXOS to boost its performance.

III. SYSTEM MODEL AND CONSENSUS

We assume a set of nodes Π = {p1, p2, . . . , pN} com-
municating through message passing where messages may
experience an arbitrarily long, although finite, delays and they
do not have access to either a shared memory or a global clock.
Nodes may fail by crashing, but do not behave maliciously. A
node that does not crash is called correct; otherwise it is faulty.
Because of the well-known FLP result [23], we assume that the
system can be enhanced with the weakest type of unreliable
failure detector [24] that is necessary to implement a leader
election service [25]. The leader election (and thus the failure
detector) is needed by M2PAXOS to accomplish a successful
change of object ownership if no conflicting commands are
proposed in parallel. In addition, due to the result in [2], we
assume that at least a strict majority of nodes, i.e.,

⌊
N
2

⌋
+ 1,

is correct and thus at most f =
⌊
N
2

⌋
nodes can be faulty at

any time (as in Paxos).

We follow the definition of Generalized Consensus as
in [11], where each node can propose commands for a set
Cmd via C-PROPOSE(Cmd c) interface, and nodes decide
command structures C-structs via C-DECIDE(C-struct cs)
interface. The specification is such that: commands that are
included in the decided C-structs must have been proposed
(Non-triviality); if a node decided a C-struct v at any time,
then at all later times it can only decide v • σ, where σ is a
sequence of commands (Stability); and two C-structs decided
by two different nodes are prefixes of the same C-struct
(Consistency). Since the Liveness property of M2PAXOS
depends on the success of the object ownership acquisition,
we adopt the following definition: if a command c has been
proposed by a correct node and there is no other concurrent and
conflicting command with c in the system, c will be eventually
decided in some C-struct.

Finally we assume that commands are defined for accessing
a set of objects whose identifiers are in the set LS. Therefore a
command c is associated with a set of identifiers c.LS ⊆ LS.

IV. BUILDING THE PROTOCOL

Before going into the details of the protocol, in this section
we give an overview of all its core parts, providing an intuition
on how they work together and what role they play in the pro-
cess of reaching consensus. We first describe how M2PAXOS
is able to provide the fastest delivery (Section IV-A), given
the best partitionable workload, by reaching consensus in two
communication delays and by relying on the existence of clas-
sic quorums of minimal size equal to

⌊
N
2

⌋
+ 1, where at most⌊

N
2

⌋
nodes can be faulty. That is achievable in the optimal

conditions for M2PAXOS, namely when there are no conflicts
among commands that are proposed by different nodes (as
in other implementations of Generalized Consensus [11], [8]),
and the application layer using the consensus service exhibits
locality.

On the contrary, if different nodes submit conflicting com-
mands concurrently, M2PAXOS switches to a slower path of
execution, whose length still depends on the characteristic
of the conflicts. In particular, if a command submitted by
a node only exhibits conflicts with commands submitted by
at most one other node, M2PAXOS guarantees to reach a
consensus in three communication delays in a fault-free case
(Section IV-B). That is a very appealing result because of the
following twofold reason: on the one hand, we are able to meet
the lower bound defined for the problem of consensus in an
asynchronous system and in the presence of conflicts; on the
other hand, unlike Fast/Generalized Paxos, we do not pay any
additional overhead by switching from a fast path to a slower
path, a feature that is important for the effectiveness of relying
on fast decisions, as pointed out by the work in [26].

Finally, if the workload exhibits generic conflict patterns
(Section IV-C), i.e., a command submitted by a node can con-
flict with commands submitted by multiple nodes, M2PAXOS
reaches consensus by paying a cost that can vary from the
best case of four communication delays to the worst case of
an unbounded number of communication delays. Even though
the worst case does not seem acceptable, it does not result
in a real limitation for M2PAXOS because that basically
happens in scenarios where it is not worth having a protocol
optimized for low inter-node conflict rates (e.g., EPaxos [8],
Fast/Generalized Paxos [11], M2PAXOS), hence where adopt-
ing a classical Paxos implementation is more effective [27].
However as we will detail in Section IV-C, in this adverse
scenario, M2PAXOS can be integrated with other consensus
implementations that give higher liveness guarantees, such
as Paxos itself, by relying on techniques to switch among
different protocols as in [28].

In the description of the protocol we do not explicitly refer
to a phase that recovers from a crash in order to finalize the
decision of commands that are proposed by the crashed nodes.
Indeed we show that this recovery is embedded into the process
of changing the ownership on an object l, because that change
has to first take into account any pending command already
accepted and not yet decided for l.

A. The Fastest Delivery

In M2PAXOS we consider the problem of solving consen-
sus using a different approach from the one considered so far
by other scalable implementations of Generalized Consensus,

e.g., EPaxos and Alvin. In those existing solutions a com-
mand is associated with a node (i.e., the command’s leader),
which is in charge of coordinating with the other nodes to
define the command’s position in the final sequence delivered
by the consensus. On the contrary, in M2PAXOS we map
accessed objects to nodes. More formally, for the purpose of
the presentation, we define a boolean function, IsOwner :
T ×Π×LS → bool, where IsOwner(t, pi, l) returns true if
node pi is the owner of object l at time t; otherwise false. This
function is such that if IsOwner(t, pi, l) = true, then ∀pj 6=
pi, IsOwner(t, pj , l) = false. For simplicity, hereafter we
use the notation IsOwner(pi, l) to indicate IsOwner(t, pi, l)
with t equal to the invocation time of IsOwner.

We also define a relation Decided = LS × IN that asso-
ciates objects with delivery positions. In particular 〈l, in〉 ∈
Decided means that a command accessing object l has
been decided after all the commands such that 〈l, in′〉 ∈
Decided ∧ in′ < in and before all the commands such that
〈l, in′′〉 ∈ Decided ∧ in′′ > in.

If pi is the proposer of a command c and ∀l ∈ c.LS
IsOwner(pi, l) = true (i.e., pi is the owner of the objects
accessed by c), then M2PAXOS can solve consensus in two
communication delays (fast decision) by relying on quorums
of size equal to

⌊
N
2

⌋
+ 1. In fact, informally, no other node

can decide at the same time the order of some command
accessing some (or all) objects requested by c given that pi is
the exclusive owner of those objects; and in order to guarantee
recoverability a majority of nodes have to receive c.

This fast decision is simple and it proceeds as follows:
triggering a C-PROPOSE(c) on pi for a command c entails: i)
broadcasting an ACCEPT with a pair 〈l, in〉 for each l ∈ c.LS,
such that in is the minimum not yet decided position for l,
i.e., 〈l, in〉 6∈ Decided; and then ii) waiting for a quorum of⌊
N
2

⌋
+ 1 ACK messages. The wait condition is necessary for

the recoverability of the decision in case of faults. In fact, if pi
crashes after having taken the decision for c we are sure that
there is at least one correct node in the system that observed
that decision. We say that pi is the leader of the consensus
instance in of l.

As an example, let us consider two commands c1 and
c2 proposed to the consensus layer and accessing the pairs
of objects {A,B} and {B,C} respectively. Further, let us
suppose that c1 was decided in position 1 for both objects A
and B, and c2 was decided in position 2 for the object B and in
position 1 for the object C. Therefore the sequence delivered
by the consensus so far is c1•c2. At this point, let us consider
IsOwner(pi, A) = true and IsOwner(pi, B) = true, and
pi proposes command c3 such that c3.LS = {A,B}, i.e., c3
will access both A and B. Then pi can simply broadcast an
ACCEPT message for c3 with the set ins = {〈A, 2〉, 〈B, 3〉},
meaning that it requests the other nodes to accept c3 as the
command that follows both c1 and c2 in the final sequence.

When a node receives an ACCEPT message, it can broad-
cast an ACK in order to indicate that it is accepting to deliver
c in the consensus instances specified by the received ACCEPT
message. Afterwards, when a node receives a quorum of ACK
messages for c, it can consider c as ready to be delivered in
those consensus instances. In this scenario, which is clearly
optimal for M2PAXOS, we are able to decide a command in

two communication delays by using a classic quorum size. As
it will be clear later, that is not always the case because a node
could also reply with a NACK message on the reception of an
ACCEPT message. This can happen when a different node pj
wants to concurrently propose a command accessing part of
(or all) the objects accessed by c. As a result, if the workload is
partitionable, then a node will generally issue ACK rather than
NACK as reply to ACCEPT messages, thus generally enabling
fast deliveries.

B. Time to Forward

In addition to the previous case, a node pi proposing a
command c could not have the ownership on all the objects in
c.LS. However, there could exist a different node pj such that
∀l ∈ c.LS IsOwner(pj , l) = true. In this case, we can opt
to forward command c to node pj and rely on pj for a fast
delivery of c. For instance, this is what a propose phase does
in Multi-Paxos, which relies on a designated leader to define
the command to be decided in the next consensus instance.

Upon a C-PROPOSE(c) event on node pi, pi forwards c to
pj . This forwarding step triggers a new C-PROPOSE(c) event
on node pj , which can execute the steps of a fast decision
for c as described in Section IV-A. We have to note that in
this case, even though the command c cannot be decided in
two communication delays, it is still decided in only three
communication delays, which is the minimum cost due to solve
consensus in an asynchronous system in case of concurrent
conflicting proposals [14].

C. Reshuffling the Ownership

Finally, the application workload may generate a scenario
where neither a proposer of a command c nor any other node
in the system has the ownership of all the objects in c.LS.
Therefore, in this case, M2PAXOS needs to reshuffle the
object ownerships such that one of the scenarios presented
in Sections IV-A and IV-B is recreated. Here we opt to assign
ownerships in a way such that the proposer of c will become
the owner of all objects accessed by c. In fact, in that way we
will have the chance of deciding c and subsequent commands
that access objects in c.LS in two communication delays.

Therefore, the proposer of c, say pi, attempts to become
the new owner for the next available consensus instances on
all the objects in c.LS. We can choose to do this in different
ways, according to the degree of conflicts. We propose a simple
and generally effective way to reshuffle object ownerships,
but that does not provide any guarantee on the maximum
number of communication delays to be paid. Then we give
some hints on how to solve this problem in a bounded number
of communication delays. In this paper we do not focus
on defining optimized policies that regulate when an object
ownership is better to change because we believe it is an
orthogonal problem and there are other more complex and
effective solutions available (e.g., [22]). In our implementation
we use a simple on-demand policy that attempts to change the
ownership when a request is issued by the application.

The simple solution. When a node pi has to propose a
command c and there is no unique owner pj (possibly equal
to pi) of all objects in c.LS, then pi executes a Paxos prepare
phase [1] in order to start a new epoch for the next available

instances of all the objects in c.LS. The idea is the same
adopted by Multi-Paxos when it elects a new leader in a new
epoch e that will be responsible for solving consensus for all
the proposals in e.

Let us say pi wants to reach consensus for a command c
in the next positions available for the objects in c.LS. Then
it broadcasts a PREPARE message containing tuples 〈l, in, e〉,
for each l ∈ c.LS, and such that in is the smallest instance
associated with l where 〈l, in〉 6∈ Decided, and e is the
successor of the current epoch number associated with l.

Afterwards, pi waits for a quorum of replies and, if the
quorum does not contain any NACK message, pi has been ac-
knowledged to be the current leader for all the objects in c.LS.
At that point, pi can just request the acceptance of c for all the
positions in defined above, as explained in Section IV-A. That
happens only if the received acknowledgements do not suggest
the acceptance of any other command different from c. In fact,
as it will be clearer in the next section, there could already be
another command c′ accepted in some of the positions selected
by pi but whose decision was not finalized yet. Such a scenario
occurs if another node lost the ownership on some objects of c′
after having sent an accept message for c′. We will address this
case in Section V. On the other hand, if pi receives at least
one NACK in this phase, it is forced to retry the ownership
acquisition with greater epoch numbers.

Bounding the Communication Delays. Negative acknowl-
edgements received during the ownership acquisition could
generate an unbounded sequence of restarts of the acquisition
itself. This is not an optimal scenario for M2PAXOS because
this happens in case multiple nodes try to concurrently acquire
the ownership on common objects. Typically, if the frequency
of such attempts is high, it means that the workload using
M2PAXOS is not partitionable. However, even though we
did not design the protocol to provide high performance in
this type of workload, the correctness of M2PAXOS is still
preserved regardless of the cost of multiple attempts.

In case we would like to establish a bound on the number of
communication delays paid in this phase, we can either totally
order ownership acquisition requests, by relying on another
separate consensus instance, or designate one single leader to
be responsible for solving conflicts on ownership acquisitions.
Also, to keep the performance consistent across varying work-
loads, we could use the approach described in [28] to combine
M2PAXOS with algorithms that perform well on workloads
not favorable to M2PAXOS. For example, we could obtain an
algorithm that dynamically switches between M2PAXOS and
MultiPaxos according to the workload characteristics.

V. M2PAXOS: PROTOCOL DETAILS

Since M2PAXOS implements the Generalized Consensus
specification, it exposes the interface C-PROPOSE(Cmd c)
used by any node to propose a command c, and the interface C-
DECIDE(C-structs cs) to deliver a C-structs cs to any node.
Before describing the details of the protocol, we introduce all
the data structures associated with a node in the system. Then
we will present the complete protocol, also covering all the
aspects of which we only provided an intuition in Section IV.

A. Data Structures

Each node pi maintains the following data structures:

- Decided and LastDecided. The former is a multidimen-
sional array that maps a pair of 〈object,consensus instance〉
to a command. Decided[l][in] = c if c has been decided in
the consensus instance in (i.e., in position in) of the object
l. The latter is a unidimensional array that maps an object to
consensus instance, and such that LastDecided[l] = in if
in is the most recent instance for which pi has observed
a decision for object l. The initial values are NULL in
Decided, and they are 0 in LastDecided.

- Epoch. It is an array that maps an object to an epoch number
(i.e., a non-negative integer). Epoch[l] = e means that e is
the current epoch number that has been observed by pi for
the the object l. The initial values are 0.

- Owners. It is an array that maps an object to a node.
Owners[l] = pj means that pj is the current owner of the
object l. The initial values are NULL.

- Rnd, Rdec and V dec. They are three multidimensional ar-
rays. The first two map a pair of 〈object,consensus instance〉
to an epoch number; the third one maps a pair of the form
〈object,consensus instance〉 to a command. In particular,
Rnd[l][in] = e if e is the highest epoch number in which
pi has participated in the consensus instance in of object l;
Rdec[l][in] = e if e is the highest epoch number in which
pi has accepted a command for the consensus instance in of
object l; and V dec[l][in] = c if c is the command accepted
by pi in the epoch Rdec[l][in] for the consensus instance in
of object l. The initial values in Rnd and Rdec are 0, while
the ones in V dec are NULL.

- Acks. It is a multidimensional array used to collect the ACK-
ACCEPT messages sent as a reply to an ACCEPT message.
The pair 〈c, j〉 is in the set Acks[l][in][e] iff pi has received
a ACKACCEPT with command c for the consensus instance
in of the object l in the epoch e.

- Cstructs. It is the most recent value of the command
structures delivered by pi. Its initial value is ⊥.

B. The Protocol

A command submitted to M2PAXOS via the C-
PROPOSE(Cmd c) goes throughout 4 phases: i) the Coordi-
nation phase, whose pseudocode is presented in Algorithm 1,
which establishes whether the command can be decided in
two, three or more communication delays; ii) the Accept phase,
whose pseudocode is presented in Algorithm 2, which requests
the acceptance of the command in a certain position with re-
spect to the other submitted commands; iii) the Decision phase,
whose pseudocode is presented in Algorithm 3, which decides
the command’s final position, appends the command to the
next Cstructs to be delivered, and executes the delivery of the
Cstructs; and iv) the Acquisition phase, whose pseudocode is
presented in Algorithm 4, which executes a reconfiguration of
the ownership, if needed, in order to elect the node in charge
of requesting the acceptance of the command.

1) Coordination phase (Algorithm 1): When a command c
is proposed by node pi via C-PROPOSE(Cmd c), M2PAXOS
coordinates the decision for c. For each object l in c.LS such
that there is no position in that is associated with l and was
decided for c, it adds the next available position for l, i.e.,

LastDecided[l] + 1, to the ins set (line 2). Therefore if ins
contains the pair 〈l, in〉, we say that pi wants to participate to
decide c in the consensus instance in for l. In other words,
M2PAXOS tries to deliver command c after all the commands
c′ such that ∃〈l, in〉 ∈ ins and Decided[l][in′] = c′ for some
in′ < in.

Clearly, if ins is an empty set, M2PAXOS does not execute
any further step, because it already found a delivery position
for c. Otherwise it distinguishes three cases depending on
whether c can be decided in two or three communication
delays, or we need a reconfiguration of the ownership relation.

In the first case, if for each pair 〈l, in〉 in ins, pi is
the current owner of object l (lines 5 and 19–23), pi can
execute an Accept phase for command c in positions ins
without changing the epochs for those positions (lines 6–8).
If that phase succeeds then c will be eventually delivered by
all correct nodes in two communication delays; otherwise pi
restarts the Coordination phase (lines 9–10). We notice that the
value of the first input parameter of the AcceptPhase function
is an empty array because in this case the node pi does
not request the acceptance of any other command different
from c. As we will explain in detail in Section V-B2, there
are scenarios in which pi must prioritize the acceptance of
commands different from c.

In the second case, if for each pair 〈l, in〉 in ins, pk (where
k 6= i) is the current owner of object l (lines 11 and 25–29),
pi can request the execution of the Coordination phase for c
to pk (lines 12–13). In the best case, pk will execute lines 1–8
by reaching a decision in two communication delays for c, so
by paying a total cost of three communication delays if we
take into account the forward of c from pi to pk. However, to
avoid blocking conditions (e.g., if pk crashed, and pi did not
detect the crash), if pi does not observe c as decided in at least
one position in for each object l in c.LS when a configurable
timeout expires (line 13), pi takes over and re-executes the
Coordination phase (lines 14–15).

In the third case (lines 16–17), neither pi nor any other
node pk other than pi have the necessary ownership to execute
the Accept phase for c. Therefore, pi forces a reconfiguration
of the ownership by entering the Acquisition phase. So pi tries
to acquire the ownership on c.LS and, as we will explain in
Section V-B4, it also executes the Accept phase.

2) Accept phase (Algorithm 2): In this phase pi requests
the acceptance of a command in all the positions listed in ins
for the epochs in eps to a quorum of nodes (lines 8–9). In
the case where this phase starts at line 8 of Algorithm 1, the
command that is broadcast by pi is c, namely the command
that pi is proposing (lines 5–7). Otherwise, this is an Accept
phase called during an Acquisition phase, and pi needs to take
into account the outcome of the ownership reconfiguration, i.e.,
toForce, to decide the command to be accepted.

Even though this last case will be clearer when we will
analyze the Acquisition phase in Section V-B4, we have to take
into account that the current Accept phase executed by pi after
having acquired the necessary ownership for c, could follow
a concurrent Accept phase executed by another node pk for a
command c′ conflicting with c. In that case, if there is some
node that already accepted c′ for a certain pair 〈l, in〉 ∈ ins,

Algorithm 1 M2PAXOS: Coordination phase (node pi).
1: upon C-PROPOSE(Cmd c)
2: Set ins ← {〈l, LastDecided[l] + 1〉 : l ∈ c.LS ∧ @in :

Decided[l][in] = c}
3: if ins = ∅ then
4: return
5: if ISOWNER(pi, ins) = > ∧ @〈l, in〉 ∈ ins : V dec[l][in] 6= NULL

then
6: Array eps
7: ∀〈l, in〉 ∈ ins, eps[l][in]← Epoch[l]
8: Bool acc← AcceptPhase({}{}, c, ins, eps)
9: if acc = ⊥ then

10: trigger C-PROPOSE(c) to pi

11: else if |GETOWNERS(ins)| = 1 ∧ pi 6∈GETOWNERS(ins) then
12: send PROPOSE(c) to pk ∈ GETOWNERS(ins)
13: wait(timeout) until ∀l ∈ c.LS, ∃in : Decided[l][in] = c
14: if ∃l ∈ c.LS, @in : Decided[l][in] = c then
15: trigger C-PROPOSE(c) to pi

16: else
17: ACQUISITIONPHASE(c)

18:
19: function Bool ISOWNER(Node pi, Set ins)
20: for all 〈l, in〉 ∈ ins do
21: if Owners[l] 6= pi then
22: return ⊥
23: return >
24:
25: function Set GETOWNERS(Set ins)
26: Set res← ∅
27: for all 〈l, in〉 ∈ ins do
28: res← res ∪ {Owners[l]}
29: return res

pi cannot ignore that, and it has to collaborate for the decision
of c′ in position in (lines 3–4).

This phase can abort by returning ⊥ after having broadcast
the ACCEPT message if pi receives at least one negative reply,
i.e., an ACKACCEPT message marked as NACK (lines 10–
11). Indeed, when a node receives an ACCEPT message for
a set of commands toDecide, a set ins of pairs 〈l, in〉, and
an array epochs eps (line 16), it can reply with a NACK
if there exists at least an object l and a position in, such
that 〈l, in〉 ∈ ins, and the node already participated in the
consensus instance in for l by using an epoch number greater
than eps[l][in] (lines 23–24). This can obviously happen when
there is another node that is concurrently trying to propose
another command in position in for l.

Otherwise, if that is not the case (line 17–22), the node can
broadcast an ACKACCEPT message with ACK, and for each
〈l, in〉 ∈ ins it also changes the following information: the
current owner of l is the sender of the ACCEPT (line 18); the
last command accepted in 〈l, in〉 is toDecide[l][in] (line 19);
the greatest epoch in which the node has accepted a value in
〈l, in〉 is eps[l][in] (line 20); and the greatest epoch in which
the node has participated for the consensus instance 〈l, in〉 is
eps[l][in] (line 21).

Therefore if pi receives at least a quorum of ACKACCEPT
messages marked as ACK for the commands in toDecide,
it can broadcast the final decision toDecide via a DECIDE
message (lines 12–14).

3) Decision phase (Algorithm 3): In this phase a node pi
can simply mark a command c as decided in position in for a
certain object l accessed by c, by setting Decided[l][in] to c
(lines 4 and 10). This happens in the following two cases.

First, pi received a DECIDE message for commands
toDecide and positions ins, such that 〈l, in〉 ∈ ins and

Algorithm 2 M2PAXOS: Accept phase (node pi).
1: function Bool ACCEPTPHASE(Array toForce, Cmd c, Set ins, Array eps)
2: Array toDecide
3: for all 〈l, in〉 ∈ ins : toForce[l][in] = 〈c′,−〉 : c′ 6= NULL do
4: toDecide[l][in]← c′

5: if ∀〈l, in〉 ∈ ins, toDecide[l][in] = NULL then
6: for all 〈l, in〉 ∈ ins do
7: toDecide[l][in]← c

8: send ACCEPT(〈toDecide, ins, eps〉) to all pk ∈ Π
9: Set replies ← receive ACKACCEPT(〈ins, eps, toDecide,−〉) from

Quorum
10: if ∃〈ins, eps, toDecide,NACK〉 ∈ replies then
11: return ⊥
12: else
13: send DECIDE(〈toDecide, ins, eps〉) to all pk ∈ Π
14: return >
15:
16: upon ACCEPT(〈Array toDecide, int ins, Array eps〉) from pj

17: if ∀〈l, in〉 ∈ ins, Rnd[l][in] ≤ eps[l][in] then
18: ∀〈l, in〉 ∈ ins, Owners[l]← pj

19: ∀〈l, in〉 ∈ ins, V dec[l][in]← toDecide[l][in]
20: ∀〈l, in〉 ∈ ins, Rdec[l][in]← eps[l][in]
21: ∀〈l, in〉 ∈ ins, Rnd[l][in]← eps[l][in]
22: send ACKACCEPT(〈ins, eps, toDecide, ACK〉) to all pk ∈ Π
23: else
24: send ACKACCEPT(〈ins, eps, toDecide,NACK〉) to pj

toDecide[l][in] = c (lines 1–4). Second, pi received at least
a quorum of ACKACCEPT messages marked as ACK for
commands toDecide, positions ins and epochs eps, such that
〈l, in〉 ∈ ins and toDecide[l][in] = c (lines 6–10).

Furthermore, as soon as there exists a command c such
that c has been decided in some position in associated with
an object l for all l ∈ c.LS, M2PAXOS checks whether it
can append c to the next Cstructs to be delivered. That is
true if c immediately follows the last appended message for
each object l in c.LS (line 12). Then, once a new command
has been appended to the Cstructs (line 13), pi triggers the
delivery of the updated Cstructs (line 14), and it advances
the pointers to the last appended messages (lines 15–16).

Algorithm 3 M2PAXOS: Decision phase (node pi).
1: upon DECIDE(〈Set toDecide, Set ins, Array eps〉) from pj

2: for all 〈l, in〉 ∈ ins do
3: if Decided[l][in] = NULL then
4: Decided[l][in]← toDecide[l][in]

5:
6: upon ACKACCEPT(〈Set ins, Array eps, Array toDecide, ACK〉) from

pj

7: for all 〈l, in〉 ∈ ins do
8: Set Acks[l][in][eps[l][in]]← Acks[l][in][eps[l][in]] ∪

∪ {〈toDecide[l][in], j〉}
9: if |Acks[l][in][eps[l][in]]|≥sizeof(Quorum) ∧

∧ Decided[l][in] = NULL then
10: Decided[l][in]← c : 〈c,−〉 ∈ Acks[l][in][eps[l][in]]

11:
12: upon (∃c : ∀l ∈ c.LS, ∃in : Decided[l][in] = c ∧

∧ in = LastDecided[l] + 1)
13: Cstructs← Cstructs • c
14: trigger C-DECIDE(Cstructs)
15: for all l ∈ c.LS do
16: pi.lastDecided[l] + +

4) Acquisition phase (Algorithm 4): A node pi tries to
acquire the necessary ownership to decide command c (line
1). For each object l in c.LS such that there is no position in
that is associated with l and was decided for c, pi adds the next
available position for l, i.e., LastDecided[l] + 1, to the ins
set (line 2). Further, for each pair 〈l, in〉 ∈ ins, it increments
the current epoch number for l (lines 3–4). Then it broadcasts

a PREPARE message with ins and the new epochs eps, and
waits for a quorum of ACKPREPARE replies (lines 5–6).

If at least one received ACKPREPARE is marked as NACK
(line 7) then the ownership acquisition did not succeed and
pi restarts a new Coordination phase for c by calling C-
PROPOSE(c) (line 8). To guarantee that c is eventually decided
also in scenarios of high conflict, pi might also decide to
trigger C-PROPOSE(c) on a designated leader by switching
to a classic Paxos protocol as described in Section IV-C.

A node can refuse a received PREPARE message (line 15)
by replying with an ACKPREPARE marked as NACK, in case
there exists a position 〈l, in〉 in the received ins set such that
the received eps[l][in] does not move any epoch forward on
that node, i.e., eps[l][in] ≤ Rnd[l][in] (lines 20–21). Rather,
if that is not the case, the node replies with an ACKPREPARE
marked as ACK, by including the last epoch in which it
accepted a command and the last command accepted for any
position 〈l, in〉 in the received ins. It also changes the epoch
number associated with any position 〈l, in〉 in the received ins
by using the values in the received eps (lines 16–19).

Algorithm 4 M2PAXOS: Acquisition Phase (node pi).
1: function Void ACQUISITIONPHASE(Cmd c)
2: Set ins ← {〈l, LastDecided[l] + 1〉 : l ∈ c.LS ∧ @in :

Decided[l][in] = c}
3: Array eps
4: ∀〈l, in〉 ∈ ins, eps[l][in]← + + Epoch[l]
5: send PREPARE(〈ins, eps〉) to all pk ∈ Π
6: Set replies← receive ACKPREPARE(〈ins, eps,−,−〉) from Quorum
7: if ∃〈ins, eps,NACK,−〉 ∈ replies then
8: trigger C-PROPOSE(c)
9: else

10: Cmd toForce← SELECT(ins, replies)
11: Bool r ← ACCEPTPHASE(toForce, c, ins, eps)
12: if r = ⊥ ∨ (∃l, in : toForce[l][in] = 〈v, r〉 ∧ v 6= c) then
13: trigger C-PROPOSE(c)

14:
15: upon PREPARE(〈Set ins, Array eps〉) from pj

16: if ∀〈l, in〉 ∈ ins,Rnd[l][in] < eps[l][in] then
17: ∀〈l, in〉 ∈ ins, Rnd[l][in]← eps[l][in]
18: Set decs← {〈l, in, V dec[l][in], Rdec[l][in]〉 : 〈l, in〉 ∈ ins}
19: send ACKPREPARE(〈ins, eps, ACK, decs〉) to pj

20: else
21: send ACKPREPARE(〈ins, eps,NACK, decs〉) to pj

22: function Set SELECT(Set ins, Set replies)
23: Array toForce
24: for all 〈l, in〉 ∈ ins do
25: Epoch k ← max({r : 〈l, in,−, r〉 ∈ decs ∧ 〈−,−,−, decs〉 ∈

replies})
26: Cmd r ← v : 〈l, in, v, k〉 ∈ decs ∧ 〈−,−,−, decs〉 ∈ replies
27: toForce[l][in]← 〈r, k〉
28: return toForce

The meaning of the last two operations is straightforward.
A node acknowledges a PREPARE on a position 〈l, in〉 by
promising that it will never positively reply to any other mes-
sage for 〈l, in〉 associated with an epoch number not greater
than eps[l][in]. In addition, it will force the sender of the
PREPARE to take into account any possible previous command
already issued by another proposal and possibly accepted in
〈l, in〉. This step is necessary to guarantee Consistency also in
scenarios where a node that is in the process of executing an
Accept phase either crashes or is suspected as crashed.

Afterwards, if pi receives a quorum of replies without any
message marked as NACK (lines 9–11), it can enter the Accept
phase for c. At this time, the input of that phase also includes
the set of commands suggested by the received ACKPREPARE

messages. In particular, unlike the Coordination phase, in this
phase pi passes the multidimensional array toForce to the
Accept phase, where toForce[l][in], if not NULL, stores the
command to be accepted in position 〈l, in〉 and its epoch
number (line 11).

An entry 〈l, in〉 of the array toForce is computed by
the SELECT function as follows (lines 10 and 22–28):
toForce[l][in] is equal to 〈r, k〉 where k is the maximum
epoch number suggested by a received ACKPREPARE message
and associated with the pair 〈l, in〉, while r is the command
(if any) associated with the epoch number k in the received
ACKPREPARE messages. Since the prepare phase is a Paxos
prepare phase extended to the case of multiple objects, we can
inherit the Paxos’s property such that if the set of commands
associated with k is not empty, it contains only one command.

Finally, if the Accept phase does not succeed (for the same
reasons described in Section V-B2) or pi did not succeed to
decide c on all the objects in c.LS (because toForce was
not empty), pi triggers a new Coordination phase by calling
C-PROPOSE(c) (lines 12–13).

C. Correctness

In this section we show why M2PAXOS implements
correctly the Generalized Consensus specification, as defined
in Section III.

First, if we consider that in M2PAXOS nodes only decide
the content of Cstructs variables (lines 13-14 of Algorithm 3),
then the Non-triviality property is guaranteed because a node
only appends proposed commands in Cstructs (line 13 of
Algorithm 3), and Stability is guaranteed because Cstructs
variables grow monotonically on each node.

We prove that M2PAXOS guarantees the Consistency prop-
erty by relying on the correctness of Paxos [1]. In particular, we
show that: (A) M2PAXOS decides at most one command for
each pair of object l and position in, meaning that the value of
Decided[l][in] (Algorithm 3), if different from NULL, is the
same on all nodes; (B) a node orders commands in the same
way for all the common objects that the commands access;
and (C) commands that access an object l are appended in
CStructs by following the order defined by the elements of
the row Decided[l].

We prove (A) by showing that the process of deciding a
command for a pair 〈l, in〉 can be actually mapped to the
execution of a Paxos instance that is identified by 〈l, in〉. Let us
define the mapping by considering the case in which a node pi
that proposes a command c is not the owner of all the objects
accessed by c (lines 16–17 of Algorithm 1). Note that this
case is the most complex one because a node has to become
the owner of an object before executing an Accept phase on
that object; the remaining case, where there already exists an
owner of that object, is explained later.

In the former case: i) pi picks a new epoch number
eps[l][in] for the object l (line 4 of Algorithm 4), and starts
Phase 1a of a Paxos instance identified by the pair 〈l, in〉
(lines 4–5 of Algorithm 4), by proposing c via the broadcast
of a PREPARE message; ii) a node pj that receives a PREPARE
message from pi for the triple 〈l, in, eps[l][in]〉, executes
Phase 1b of the Paxos instance identified by the pair 〈l, in〉

(lines 15–21 of Algorithm 4), by sending its reply back to pi
via an ACKPREPARE message; iii) like in Phase 2a of Paxos,
pi waits for a quorum of ACKPREPARE messages with ACK,
each one containing the last command accepted by the sender
for the instance 〈l, in〉, and the greatest epoch in which the
sender has accepted a command for the instance 〈l, in〉 (line
6 of Algorithm 4); iv) pi computes the SELECT function on
the quorum of received replies by following the picking rule
of Phase 2a of Paxos applied to the instance 〈l, in〉 (lines 10,
22–28 of Algorithm 4), and then it broadcasts via an ACCEPT
message either the chosen command, if any, or c otherwise
(line 11 of Algorithm 4, and lines 2–8 of Algorithm 2); v) a
node pj receiving an ACCEPT message with a command c′

and an epoch eps[l][in] executes Phase 2b of Paxos applied
to the instance 〈l, in〉, and if that is successful, it broadcasts
an ACKACCEPT message with ACK, c′, and eps[l][in] to
all (lines 16–22 of Algorithm 2); vi) a node can decide a
command c′ in position in for an object l if it receives a
quorum of ACKACCEPT messages with ACK for c′ in the
instance 〈l, in〉, like the learning policy of Paxos (lines 1–10
of Algorithm 3, and lines 9–14 of Algorithm 2).

In the latter case, namely where there already exists a
unique owner of all the objects accessed by a proposed
command c, M2PAXOS acts as Multi-Paxos for all the objects
l ∈ c.LS because the node that already has the ownership
of l behaves as the designated leader for the instance of
Multi-Paxos identified by l. Hence a node pi that proposes
a command c sends c to the current owner of the objects in
c.LS (possibly pi itself, lines 5–15 of Algorithm 1), which
runs M2PAXOS by starting from step iv) defined above.

As a result, by relying on the correctness of Paxos,
which prevents two nodes from deciding different values,
M2PAXOS guarantees that for each object l and position in,
if a node pi decided a command c in position in for l, and
a node pj decided a command c′ in position in for l (i.e.,
Decided[l][in] = c on pi, and Decided[l][in] = c′ on pi),
then c = c′.

Now we prove (B), which means that: given a node pi, for
any two commands c and c′, two objects l1 and l2, and four
positions h, w, k, z, if Decided[l1][h] = c, Decided[l1][w] =
c′, Decided[l2][k] = c and Decided[l2][z] = c′, we have that
h < w iff k < z. The proof proceeds as follows. When pi
sets Decided[l1][h] = c, it also sets Decided[l2][k] = c, since
the same quorum of ACKACCEPT messages accepts c with
ACK in both positions h for l1 and k for l2 (lines 6–10 of
Algorithm 3). Note that is true because, given a command
c, a node sends an ACKACCEPT message with ACK for c
only if it can accept c for all the objects in c.LS (lines 16–
22 of Algorithm 2). Now, if Decided[l1][w] = c′ and h <
w by hypothesis, it must be that when c′ was proposed for
acceptance in position w for l1, there was already the command
c decided in position h for l1, since M2PAXOS always chooses
for the acceptance on an object a position greater than the last
one decided for that object (line 2 of Algorithms 1 and 4).
In addition, we just proved that, when M2PAXOS performs
Decided[l1][h] = c, the command c is also decided in position
k for l2, i.e., Decided[l2][k] = c, and therefore it must be that
when c′ was proposed for acceptance in position w for l1 and
z for l2, z was at least k + 1, and hence k < z (line 2 of
Algorithms 1 and 4).

Proving (C) is straightforward if we consider that a com-
mand c is appended to the CStructs of a node only if, for
each object l accessed by c, there exists a position in such
that Decided[l][in] = c, and for any position in′ < in,
Decided[l][in′] 6= NULL on that node (see lines 12–13 of
Algorithm 3).

By (A) and (B), given two conflicting commands c and c′
in the CStructs of two nodes pi and pj , we have that: for
each object l that is commonly accessed by c and c′, there
exist some k and z, where k < z, and Decided[l][k] = c
and Decided[l][z] = c′ on both pi and pj . Further, by (C),
command c′ cannot be appended to any CStructs before c
has been appended. Therefore the conflicting commands c and
c′ are in the same order in the CStructs delivered by both pi
and pj , hence guaranteeing Consistency.

The Liveness property, as defined in Section III, is guaran-
teed under the same assumptions of Paxos, such that at most
f =

⌊
N
2

⌋
nodes can be faulty at any time, and a leader election

is eventually possible. Indeed, in that case, if a command c
has been proposed by a correct node pi, eventually, if there is
no other concurrent and conflicting command with c in the
system, pi succeeds the execution of all the phases of the
protocol for c, since no other node attempts to become the
owner of any of the objects in c.LS, and there always exists
a quorum of nodes that acknowledge for messages.

VI. EVALUATION STUDY

We implemented M2PAXOS and all competitors within
a unified framework, written in the Go programming lan-
guage [29], version 1.4rc1. Go is compiled, garbage collected,
and it has built-in support for managing concurrency.

We evaluated M2PAXOS by comparing it against three
other consensus algorithms: EPaxos, Generalized Paxos and
Multi-Paxos. We used up to 49 nodes on the Amazon EC2 in-
frastructure. Unless otherwise stated, each node is a c3.4xlarge
instance (Intel Xeon 2.8GHz, 16 cores, 30GB RAM) running
Amazon Linux 2014.09.1. All nodes were deployed under a
single placement group. Network bandwidth was measured in
excess of 7900mbps. Throughout the evaluation, we refer to
a local command from a node pi as a command that operates
on objects whose ownership is already held by pi.

To properly load the system, we injected commands into
an open-loop using up to 64 client threads at each node.
Commands are accompanied by a 16-byte payload. After
issuing each command, a client thread goes to sleep for
a configurable amount of time, i.e., think time. To prevent
overloading the system, we limit the number of commands
still in-flight. The limit is configured for best performance
under each deployment, and when it is reached, a node will
skip issuing new commands. Except for the experiments in
Figure 2, network messages are batched in order to optimize
the network utilization. Each datapoint represents the average
of at least 5 measurements.

As benchmarks, we implemented a synthetic application
that we customized in order to cover different workloads,
which span from the most favorable ones (i.e., partitionable
with no inter-node conflicts) to those that require command
forwarding (i.e., when the accessed objects share a single

remote owner), and to those adverse (i.e., when ownership
must be acquired from multiple nodes). In addition, we also
ported TPC-C [18], the well-known benchmark widely used
in on-line transaction processing systems. Our implementation
of TPC-C generates commands that are composed of all the
parameters needed for executing TPC-C transactions according
to the stored procedure model [30], [4] (e.g., the Id of the
accessed warehouse, the Id of the accessed district).
However M2PAXOS is a consensus layer, thus the actual
transaction processing has been omitted. The main purpose of
evaluating TPC-C is to show the performance of M2PAXOS
when relevant workload characteristics, such as conflict degree
and the number of accessed objects, are set by a well-known
benchmark.

In the following plots, we do not explicitly report per-
formance measurements when nodes crash. This is because
that scenario would be equivalent of migrating the ownerships
acquired by the crashed node to the other requesting nodes.

A. Synthetic benchmark

We first evaluated M2PAXOS under its most favorable
conditions. More specifically, all commands touch a single
object, and a command proposed by a node can only conflict
with commands proposed by the same node. This scenario is
representative for partitioned objects, where replication is only
employed for fault-tolerance.

We evaluated the scalability of each consensus protocol as
we scaled the system up from 3 to 49 nodes. Figure 1 shows
the maximum throughput achieved. In other words, for each
configuration tested, we loaded the system up to its saturation
and we collected the throughput right before reaching that
point. M2PAXOS provides a significant improvement (i.e.,
up to 3-7×) when compared to the nearest competitor (i.e.,
EPaxos), it exhibits great scalability until 11 nodes, and its
throughput keeps increasing past 11 nodes, albeit at a slower
rate. Multi-Paxos is a distant runner-up at 11 nodes and
below, and its performance degrades due to the single leader
saturating its computational resources (which are mainly the
CPU utilization and the network socket management). After
that, it leaves the way for EPaxos, which almost manages to
maintain its throughput up to 49 nodes.

Figure 2 shows the median command latency with a system
without batching network messages. This way, it is clear the
end-to-end latency per command that is experienced by the
application. With a low number of nodes, M2PAXOS narrowly
wins over Multi-Paxos, having its latency lower by 23%. As the
number of nodes is increased, M2PAXOS remains the fastest
to deliver, with up to 41% better latency than EPaxos.

In practice however, a system is not always maintained
at full capacity. Therefore we also explored a more practical
deployment with a fixed client workload at each node, in order
to assess the scalability of our proposal. Figure 3 reports the
throughput of all competitors when the number of clients per
node is kept fixed while the node count increases. This way we
assess how M2PAXOS scales up its performance. The results
show that, unlike the others, M2PAXOS exhibits near-linear
scalability because it does not generate high contention at the
network layer.

3 5 7 11 19 29 39 49
Nodes

0

1

2

3

4

5

6

7
T
h
ro

u
g
h
p
u
t

(x
 1

0
0
k

m
sg

/s
)

Fig. 1. Maximum attainable throughput varying the
number of nodes. Command locality is 100%.

3 5 7 11 19 29 39 49
Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

La
te

n
cy

 (
m

s)

M2 Paxos

EPaxos

Gen. Paxos

Multi-Paxos

Fig. 2. Median latency without batching network
messages. Command locality is 100%.

0 10 20 30 40 50
Nodes

0

1

2

3

4

5

T
h
ro

u
g
h
p
u
t

(x
 1

0
0

k
m

sg
/s

)

M2 Paxos

EPaxos

Multi-Paxos

Gen. Paxos

Fig. 3. Scalability. 64 client threads per node,
and 5 ms think time. Command locality is 100%.

0 1 2 3 4 5 6
Throughput (x 100k msg/s)

0

2

4

6

8

10

12

14

16

La
te

n
cy

 (
m

s)

(a) 5 nodes

0 1 2 3 4 5 6 7
Throughput (x 100k msg/s)

0

2

4

6

8

10

12

14

16 M2 Paxos 100%

M2 Paxos 0%
EPaxos 100%
Epaxos 0%
Multi-Paxos
Gen. Paxos

(b) 11 nodes

0 1 2 3 4 5 6 7
Throughput (x 100k msg/s)

0

5

10

15

20

25

30

(c) 49 nodes

Fig. 5. Latency vs. throughput plots, with 0% and 100% command locality for M2PAXOS and EPaxos.

c3.xlarge c3.2xlarge c3.4xlarge c3.8xlarge
Machine type

0

2

4

6

8

T
h
ro

u
g
h
p
u
t

(x
 1

0
0

k
m

sg
/s

)

M2 Paxos

Multi-Paxos

EPaxos

Gen. Paxos

Fig. 4. Maximum throughput for 11-nodes deployments with different
machine types. The number of cores are 4, 8, 16 and 32 respectively.

Summarizing, by the analysis of Figures 1, 2, and 3 we
can point out weaknesses of the other competitors, which are
overcome by M2PAXOS. On the one hand, both Generalized
Paxos and Multi-Paxos suffer from the single leader design,
which prevents performance from scaling when the size of
the deployment increases. On the other hand, although EPaxos
allows multiple leaders to concurrently establish the order of an
issued command without contacting a single designated node,
its characteristics hamper the achievement of high performance
when the number of nodes goes beyond 7.

In fact, EPaxos requires a bigger size of quorum in order to
deliver a command in two communication delays in configura-
tions with more than 5 nodes, unlike M2PAXOS. As a result,
as showed in Figure 3, EPaxos provides performance similar

to M2PAXOS up to 7 nodes, where the size of M2PAXOS’s
quorum and EPaxos’s quorum is comparable. After that, the
gap in performance becomes substantial. In addition to that,
EPaxos requires the identification of dependent commands
in order to deliver fast. The meta-data are shared between
local threads, thus introducing contention that can lead to
poor CPU utilization (an evidence of that is in Figure 4).
The overhead of maintaining dependency relations kicks in
also when commands are sent through the network because
dependencies should be included in the messages themselves.
As a consequence of that, messages are bigger and thus they
require more time to traverse the network links.

We further evaluated how consensus protocols scale when
the number of nodes in a deployment is held constant, and
the CPU capacity of each node is increased from 4 to 32
cores. This is relevant for the implementations of Generalized
Consensus (which include EPaxos) in order to assess their
ability to exploit parallelism in case of low or no conflicts
among commands. To this purpose, we ran our benchmark on
four classes of Amazon EC2 machines. Each class increment
represents a doubling of the number of CPU cores, and an
almost 2× increase in available RAM.

Figure 4 shows the result of this experiment on four deploy-
ments of 11 nodes each. M2PAXOS exhibits great scalability
up to 16 cores. Throughput still increases beyond that, but
at a lower rate, as other components of the system become
bottlenecked (more specifically, the networking layer). Clearly
this scalability is not exploited by single leader algorithms.
Also, EPaxos is not able to take advantage of the additional
local resources available because of the cost of dependency

management and graph processing, both of which require
synchronization among local threads. M2PAXOS does not
require any local processing that generates contention among
threads, therefore having more CPUs increases also the parallel
tasks accomplished per time unit.

Then, we evaluate the behavior of M2PAXOS for work-
loads that exhibit some level of inter-node conflict (Figures 5
and 6) and commands accessing one object. To do that, we
show two sets of experiments varying the percentage of local
commands.

100% 50% 33% 25% 20% 10% 3% 0%
% of remote commands

0

1

2

3

4

5

6

7

T
h
ro

u
g
h
p
u
t

(x
 1

0
0
k

m
sg

/s
)

M2 Paxos 3
Multi-Paxos 3

EPaxos 3

M2 Paxos 11

Multi-Paxos 11
EPaxos 11

(a) Throughput

100% 50% 33% 25% 20% 10% 3% 0%
% of remote commands

0

50

100

150

200

250

La
te

n
cy

 (
m

s)

(b) Latency

Fig. 6. Performance varying the probability of proposing a non-local (remote)
command. The deployment consists of 3 and 11 nodes.

In Figure 5 we report the latency vs. throughput plots for
several deployments (5, 11, and 49 nodes). For M2PAXOS
and EPaxos we plot the results of running two workloads
at opposite sides of the locality spectrum where commands
still access one object. One workload has perfect locality
(100% local commands) and is the best case for M2PAXOS,
where commands proposed by a node only conflict with
commands from the same node; the other workload has no
locality (0% local commands). Any other workload would fall
between these two limits. Multi-Paxos and Generalized Paxos
are not sensitive to locality, while M2PAXOS handles non-
local commands by simply forwarding them to the node that
currently owns the requested object (see also Section IV-B).
In such a scenario, EPaxos can fail in delivering a transaction
fast due to the collection of conflicting dependencies during
its broadcast phase. For this reason, it breaks down up to 10%
earlier in the workload with no locality.

In Figure 6 we show the performance of all competitors
given two configurations with 3 and 11 nodes, and by varying
the percentage of non-local commands with a finer granularity
than that in Figure 5. Here the impact of the forwarding mecha-
nism of M2PAXOS is evident. The performance degradation is

very small (on average 4%), whereas other competitors already
achieved their top performance, thus changing the probability
of issuing a local command does not provide significant
performance improvement or degradation, respectively.

The last tested scenario using the synthetic benchmark
is where commands are complex. We define complex com-
mands as the commands that access multiple objects, hence
potentially conflicting with commands from multiple nodes.
Specifically, in this experiment a complex command accesses
one object in a set, called local-set, on which the local node
is likely to have the ownership, and one uniformly distributed
across all objects. In this configuration, we fixed the number of
nodes as 49 and we varied the size of local-set. The results (in
Figure 7) show a drop in throughput as the fraction of complex
commands is increased. The drop rate and final throughput
all depend on the the size of local-set because it affects
the contention rate. Multi-Paxos and Generalized Paxos are
not affected by the presence of complex commands. EPaxos
exhibits a small reduction in throughput as the percentage of
complex commands nears 100%. However, M2PAXOS is able
to sustain the throughput by even using almost 50% of complex
commands, in case the size of local-set is 1000.

One important observation, which is valid for both EPaxos
and Generalized Paxos, is that when complex commands are
deployed, messages on the network become much bigger
due to the presence of dependency relations to include. It
is worth mentioning that protocols like EPaxos have to also
include dependencies from other local threads that may issue a
conflicting command. M2PAXOS does not suffer from such a
drawback because it does not rely on command dependencies
and local threads can proceed in parallel as long as the node
has the ownership on those objects.

B. TPC-C benchmark

In this evaluation study we included also a benchmark that
produces the same workload as TPC-C. We configured it by
deploying a total number of warehouses equal to 10*N
(e.g., with 9 nodes we deployed 90 warehouses). Following
the benchmark specification, we associated the appropriate
number of customers, districts, items, etc. TPC-C
has five transaction profiles, where each of them has a set of
indexes identifying the objects to access (e.g., the warehouse
Id). Those indexes corresponds to the payload of the complex
command we issue. We define a warehouse to be local to a
node if its warehouse object and all the objects related with
it (e.g., its districts) belong to the local-set of that node.

Figure 8 shows the performance by varying the likelihood
for a thread to broadcast a command on a local warehouse
(Figure 8(a)), rather than on a warehouse (Figure 8(b))
uniformly selected across all. According to the specification of
TPC-C, even though the requested warehouse is the local
one, 15% of the payment transactions (a profile of TPC-C) can
still access a customer belonging to another warehouse.

We first notice that, the overall throughput provided by
M2PAXOS is less than the one obtained before with the single-
object command cases. This is because TPC-C transaction
profiles need more than 3 parameters to execute, thus, ac-
cordingly, commands’ size is bigger. Performance decreases
further (by as much as 40%) when we let the benchmark

10-6 10-5 10-4 10-3 10-2 10-1 100

Fraction of complex commands

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
h
ro

u
g
h
p
u
t

(x
 1

0
0
k

m
sg

/s
)

M2 Paxos (1)

M2 Paxos (10)

M2 Paxos (100)

M2 Paxos (1000)
EPaxos (20)
EPaxos (100)
Multi-Paxos (100)
Gen. Paxos (100)

Fig. 7. Throughput varying the fraction of complex
commands with 49 nodes. In parentheses the number
of possible objects per node.

3 4 5 6 7 8 9 10 11
Nodes

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

T
h
ro

u
g
h
p
u
t

(x
 1

0
0
k

m
sg

/s
)

M2 Paxos

EPaxos

Multi-Paxos

Gen. Paxos

(a) 0% of commands on a remote warehouse

3 4 5 6 7 8 9 10 11
Nodes

0.5

1.0

1.5

2.0

2.5

3.0

T
h
ro

u
g
h
p
u
t

(x
 1

0
0
k

m
sg

/s
)

M2 Paxos

EPaxos

Multi-Paxos

Gen. Paxos

(b) 15% of commands on a remote warehouse

Fig. 8. Performance with TPC-C workload by varying the number of nodes up to 11.

access a non-local warehouse for the 15% of the cases.
However, still M2PAXOS provides a throughput greater than
400k commands ordered per second in the configuration of
Figure 8(a), and more than 250k under the configuration of
Figure 8(b).

The closest competitor (but still 2.4× slower) is Multi-
Paxos. The reason is related to the difficulties experienced by
EPaxos (5.5× slower) on handling higher contention, which
leads the agreement phase to perform an additional ordering
phase after trying (and failing) to deliver fast. Multi-Paxos’s
performance is independent from the message composition and
the overall application contention because the total order it pro-
duces does not take into account any conflict among messages.
In fact, it performs similar to the results in Figure 6(a).

VII. CONCLUSION

In this paper we presented M2PAXOS, an algorithm pro-
viding a scalable and high-performance implementation of
Generalized Consensus. It is able to decide sequences of com-
mands with the optimal cost of two communication delays in
the case of partitionable workload and with the minimum size
of quorums achievable for solving consensus in asynchronous
systems, i.e.,

⌊
N
2

⌋
+ 1, where N is the total number of nodes.

The evaluation study of M2PAXOS confirms the effectiveness
of the approach by gaining as much as 7× over state-of-the-art
consensus and generalized consensus algorithms.

VIII. ACKNOWLEDGMENTS

This work is partially supported by Air Force Office of
Scientific Research (AFOSR) under grant FA9550-15-1-0098
and by US National Science Foundation under grant CNS-
1523558.

REFERENCES

[1] L. Lamport, “The Part-time Parliament,” ACM TOCS, 1998.
[2] B. Charron-Bost and A. Schiper, “Uniform Consensus is Harder Than

Consensus,” J. Algorithms, vol. 51, no. 1, pp. 15–37, Apr. 2004.
[3] J. C. Corbett et al., “Spanner: Google’s Globally Distributed Database,”

ACM TOCS, 2013.
[4] S. Hirve, R. Palmieri, and B. Ravindran, “Archie: a speculative repli-

cated transactional system,” in Middleware, 2014, pp. 265–276.
[5] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete, “MDCC:

Multi-data Center Consistency,” in EuroSys 2013.

[6] H. Mahmoud et al., “Low-latency Multi-datacenter Databases Using
Replicated Commit,” Proc. VLDB Endow., 2013.

[7] L. Lamport, “Paxos made simple,” ACM Sigact News, 2001.

[8] I. Moraru, D. G. Andersen, and M. Kaminsky, “There is More Consen-
sus in Egalitarian Parliaments,” in SOSP 2013.

[9] Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: Building Efficient
Replicated State Machines for WANs,” in OSDI 2008.

[10] A. Turcu, S. Peluso, R. Palmieri, and B. Ravindran, “Be General and
Don’t Give Up Consistency in Geo-Replicated Transactional Systems,”
in OPODIS 2014.

[11] L. Lamport, “Generalized Consensus and Paxos,” Microsoft Research,
Tech. Rep. MSR-TR-2005-33, March 2005.

[12] F. Pedone and A. Schiper, “Generic Broadcast,” in DISC, 1999, pp.
94–108.

[13] L. Lamport, “Fast paxos,” Distributed Computing, 2006.

[14] ——, “Future directions in distributed computing.” Springer-Verlag,
2003, ch. Lower Bounds for Asynchronous Consensus.

[15] J. Cowling and B. Liskov, “Granola: Low-overhead distributed transac-
tion coordination,” ser. USENIX ATC, 2012, pp. 21–21.

[16] D. Sciascia, F. Pedone, and F. Junqueira, “Scalable deferred update
replication,” in DSN, 2012, pp. 1–12.

[17] S. Peluso, P. Romano, and F. Quaglia, “SCORe: A Scalable One-copy
Serializable Partial Replication Protocol,” in Middleware 2012.

[18] “Tpc-c benchmark,” http://www.tpc.org/tpcc/.

[19] L. Lamport, Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2002.

[20] P. Sutra and M. Shapiro, “Fast genuine generalized consensus,” in SRDS
2011.

[21] N. Carvalho, P. Romano, and L. Rodrigues, “Asynchronous Lease-based
Replication of Software Transactional Memory,” in Middleware 2010.

[22] D. Hendler, A. Naiman, S. Peluso, F. Quaglia, P. Romano, and
A. Suissa, “Exploiting Locality in Lease-Based Replicated Transactional
Memory via Task Migration,” in DISC 2013.

[23] M. J. Fischer et al., “Impossibility of Distributed Consensus with One
Faulty Process,” Journal of the ACM, 1985.

[24] R. Guerraoui and A. Schiper, “Genuine Atomic Multicast in Asyn-
chronous Distributed Systems,” Elsevier TCS 2001.

[25] R. Guerraoui and L. Rodrigues, Introduction to Reliable Distributed
Programming. Springer-Verlag New York, Inc., 2006.

[26] B. Charron-Bost and A. Schiper, “Improving fast paxos: being opti-
mistic with no overhead,” in PRDC 2006.

[27] F. Junqueira, Y. Mao, and K. Marzullo, “Classic paxos vs. fast paxos:
Caveat emptor,” in HotDep, 2007.

[28] R. Guerraoui, V. Kuncak, and G. Losa, “Speculative linearizability,” ser.
PLDI, 2012, pp. 55–66.

[29] “The go programming language.” http://golang.org/.

[30] B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wiesmann,
“Using optimistic atomic broadcast in transaction processing systems,”
IEEE Trans. Knowl. Data Eng., vol. 15, no. 4, pp. 1018–1032, 2003.

APPENDIX

module MultiConsensus
A set of constants and definitions for use in the specification of MultiPaxos-like algorithms.

extends Integers, FiniteSets

constants Acceptors, Quorums, V , None

assume None /∈ V

assume ∀Q ∈ Quorums : Q ⊆ Acceptors

assume ∀Q1, Q2 ∈ Quorums : Q1 ∩Q2 6= {}

Ballots
∆
= Nat

assume − 1 /∈ Ballots

Instances
∆
= Nat

MajQuorums
∆
= {Q ∈ subset Acceptors : Cardinality(Q) > Cardinality(Acceptors)÷ 2}

Max (xs, LessEq(,))
∆
= choose x ∈ xs : ∀ y ∈ xs : LessEq(y , x)

14

module MultiPaxos

An abstract specification of the MultiPaxos algorithm. We do not model the network nor leaders
explicitely. Instead, we keep the history of all votes cast and use this history to describe how new
votes are cast. Note that, in some way, receiving a message corresponds to reading a past state of
the sender. We produce the effect of having the leader by requiring that not two different values
can be voted for in the same ballot.

This specification is inspired from the abstract specification of Generalized Paxos presented in
the Generalized Paxos paper by Lamport .

extends MultiConsensus

The variable ballot maps an acceptor to its current ballot.

Given an acceptor a, an instance i , and a ballot b, vote[a][i][b] records the vote that a casted in

ballot b of instance i .

variables
ballot , vote, propCmds

Init
∆
=
∧ ballot = [a ∈ Acceptors 7→ − 1]
∧ vote = [a ∈ Acceptors 7→

[i ∈ Instances 7→
[b ∈ Ballots 7→ None]]]

∧ propCmds = {}

TypeInv
∆
=

∧ ballot ∈ [Acceptors → {− 1} ∪ Ballots]
∧ vote ∈ [Acceptors →

[Instances →
[Ballots → {None} ∪V]]]

∧ propCmds ∈ subset V

Properties of ballot and vote

The maximal ballot in which an acceptor a voted is always less than or equal to its current ballot.

WellFormed
∆
= ∀ a ∈ Acceptors : ∀ i ∈ Instances : ∀ b ∈ Ballots :

b > ballot [a]⇒ vote[a][i][b] = None

ChosenAt(i , b, v)
∆
=

∃Q ∈ Quorums : ∀ a ∈ Q : vote[a][i][b] = v

Chosen(i , v)
∆
=

∃ b ∈ Ballots : ChosenAt(i , b, v)

Choosable(v , i , b)
∆
=

∃Q ∈ Quorums : ∀ a ∈ Q : ballot [a] > b ⇒ vote[a][i][b] = v

SafeAt(v , i , b)
∆
=

15

∀ b2 ∈ Ballots : ∀ v2 ∈ V :
(b2 < b ∧ Choosable(v2, i , b2))
⇒ v = v2

SafeInstanceVoteArray(i)
∆
= ∀ b ∈ Ballots : ∀ a ∈ Acceptors :

let v
∆
= vote[a][i][b]

in v 6= None ⇒ SafeAt(v , i , b)

SafeVoteArray
∆
= ∀ i ∈ Instances : SafeInstanceVoteArray(i)

If the vote array is well formed and the vote array is safe, then for each instance only a unique

value can be chosen.

theorem TypeInv ∧WellFormed ∧ SafeVoteArray ⇒ ∀ i ∈ Instances :
∀ v1, v2 ∈ V : Chosen(i , v1) ∧ Chosen(i , v2)⇒ v1 = v2

A ballot is conservative when all acceptors which vote in the ballot vote for the same value. In

MultiPaxos, the leader of a ballot ensures that the ballot is conservative.

Conservative(i , b)
∆
=

∀ a1, a2 ∈ Acceptors :
let v1

∆
= vote[a1][i][b]

v2
∆
= vote[a2][i][b]

in (v1 6= None ∧ v2 6= None)⇒ v1 = v2

ConservativeVoteArray
∆
=

∀ i ∈ Instances : ∀ b ∈ Ballots :
Conservative(i , b)

The maximal ballot smaller than max in which a has voted in instance i .

MaxVotedBallot(i , a, max)
∆
=

Max ({b ∈ Ballots : b ≤ max ∧ vote[a][i][b] 6= None} ∪ { − 1}, ≤)

MaxVotedBallots(i , Q , max)
∆
= {MaxVotedBallot(i , a, max) : a ∈ Q}

The vote casted in the maximal ballot smaller than max by an acceptor of the quorum Q .

HighestVote(i , max , Q)
∆
=

if ∃ a ∈ Q : MaxVotedBallot(i , a, max) 6= − 1
then

let MaxVoter
∆
= choose a ∈ Q :

MaxVotedBallot(i , a, max) = Max (MaxVotedBallots(i , Q , max), ≤)
in vote[MaxVoter][i][MaxVotedBallot(i , MaxVoter , max)]

else
None

Values that are safe to vote for in ballot b according to a quorum Q whose acceptors have all

reached ballot b.

If there is an acceptor in Q that has voted in a ballot less than b, then the only safe value is the
value voted for by an acceptor in Q in the highest ballot less than b.

16

Else, all values are safe.

In an implementation, the leader of a ballot b can compute ProvedSafeAt(i , Q , b) when it receives

1b messages from the quorum Q .

ProvedSafeAt(i , Q , b)
∆
=

if HighestVote(i , b − 1, Q) 6= None
then {HighestVote(i , b − 1, Q)}
else V

In a well-formed, safe, and conservative vote array, all values that are proved safe are safe.

theorem TypeInv ∧WellFormed ∧ SafeVoteArray ∧ ConservativeVoteArray
⇒ ∀ v ∈ V : ∀ i ∈ Instances :

∀Q ∈ Quorums : ∀ b ∈ Ballots :
∧ ∀ a ∈ Q : ballot [a] ≥ b
∧ v ∈ ProvedSafeAt(i , Q , b)
⇒ SafeAt(v , i , b)

The propose action:

Propose(v)
∆
=

∧ propCmds ′ = propCmds ∪ {v}
∧ unchanged 〈ballot , vote〉

The JoinBallot action: an acceptor can join a higher ballot at any time. In an implementation,

the JoinBallot action is triggered by a 1a message from the leader of the new ballot.

JoinBallot(a, b)
∆
=

∧ ballot [a] < b
∧ ballot ′ = [ballot except ! [a] = b]
∧ unchanged 〈vote, propCmds〉

The Vote action: an acceptor casts a vote in instance i . This action is enabled when the acceptor
has joined a ballot, has not voted in its current ballot, and can determine, by reading the last
vote cast by each acceptor in a quorum, which value is safe to vote for. If multiple values are
safe to vote for, we ensure that only one can be voted for by requiring that the ballot remain
conservative.

In an implementation, the computation of safe values is done by the leader of the ballot when it
receives 1b messages from a quorum of acceptors. The leader then picks a unique value among
the safe values and suggests it to the acceptors.

Vote(a, v , i)
∆
=

∧ ballot [a] 6= − 1
∧ vote[a][i][ballot [a]] ∈ {None, v}
∧ ∃Q ∈ Quorums :

∧ ∀ q ∈ Q : ballot [q] ≥ ballot [a]
∧ v ∈ ProvedSafeAt(i , Q , ballot [a]) ∩ propCmds
∧ vote ′ = [vote except ! [a] =

[@ except ! [i] = [@ except ! [ballot [a]] = v]]]
∧ unchanged 〈ballot , propCmds〉

17

∧ Conservative(i , ballot [a])′

Next
∆
=
∨ ∃ v ∈ V : Propose(v)
∨ ∃ a ∈ Acceptors : ∃ b ∈ Ballots : JoinBallot(a, b)
∨ ∃ a ∈ Acceptors, i ∈ Instances, v ∈ propCmds :

Vote(a, v , i)

Correctness
∆
=

∀ i ∈ Instances : ∀ v1, v2 ∈ V :
Chosen(i , v1) ∧ Chosen(i , v2)⇒ v1 = v2

Spec
∆
= Init ∧ 2[Next]〈ballot, vote, propCmds〉

theorem Spec ⇒ 2Correctness

18

module Objects

constants Commands, AccessedBy(), Objects

AccessedBy(c) is the set of objects accessed by c.

assume ∀ c ∈ Commands : AccessedBy(c) ∈ subset Objects

19

module GFPaxos

An abstract specification of GFPaxos. It consists in coordinating several MultiPaxos instances

(one per object).

extends MultiConsensus, Sequences, Objects

assume Instances ⊆ Nat \ {0}

assume Commands = V

ballot and vote are functions from object to “ballot” and “vote” structures of the MultiPaxos

specification.

variables
ballots, votes, propCmds

The MultiPaxos instance of object o.

MultiPaxos(o)
∆
=

instance MultiPaxos with
ballot ← ballots[o],
vote ← votes[o]

InitBallot
∆
= [a ∈ Acceptors 7→ − 1]

InitVote
∆
= [a ∈ Acceptors 7→ [i ∈ Instances 7→ [b ∈ Ballots 7→ None]]]

The initial state

Init
∆
=
∧ ballots = [o ∈ Objects 7→ InitBallot]
∧ votes = [o ∈ Objects 7→ InitVote]
∧ propCmds = {}

Is instance i of object o complete?

Complete(o, i)
∆
=

∃ v ∈ V : MultiPaxos(o) !Chosen(i , v)

The next undecided instance for object o:

NextInstance(o)
∆
=

let completed
∆
= {i ∈ Instances : Complete(o, i)}

in if completed 6= {}
then Max (completed , ≤) + 1
else Max (Instances, ≥) the minimum instance

The next-state relation:

Either an acceptor executes the JoinBallot action in the MultiPaxos instance of an object o, or,
for a command c, an acceptor executes the Vote action in all instances that correspond to an
object that the command c accesses.

Note that for each object o, an acceptor only votes in the instance whose predecessor is the largest
instance in which a command was decided for o, using a non-distributed implementation.

20

Join a higher ballot for an object:

JoinBallot(a, o, b)
∆
=

∧ MultiPaxos(o) !JoinBallot(a, b)
∧ ∀ obj ∈ Objects \ {o} : unchanged 〈ballots[obj], votes[obj]〉

Vote for c in all of the instances of c’s objects:

Vote(a, c)
∆
=

∧ ∃ is ∈ [AccessedBy(c)→ Instances] :
∧ ∀ obj ∈ AccessedBy(c) : is[obj] ≤ NextInstance(obj)
∧ ∀ o ∈ AccessedBy(c) :

MultiPaxos(o) !Vote(a, c, is[o])
∧ ∀ o ∈ Objects \AccessedBy(c) : unchanged 〈ballots[o], votes[o]〉

Propose(v)
∆
=

∧ propCmds ′ = propCmds ∪ {v}
∧ unchanged 〈ballots, votes〉

Next
∆
=
∨ ∃ c ∈ V : Propose(c)
∨ ∃ o ∈ Objects : ∃ a ∈ Acceptors : ∃ b ∈ Ballots :

JoinBallot(a, o, b)
∨ ∃ c ∈ Commands : ∃ a ∈ Acceptors :

Vote(a, c)

Spec
∆
= Init ∧2[Next]〈ballots, votes, propCmds〉

Correctness properties.

True when c1 has been chosen before c2 in the MultiPaxos instance associated to object o. This

definition works only when there are no duplicate chosen commands.

ChosenInOrder2(c1, c2, o)
∆
=

∧ c1 6= c2
∧ ∃ i , j ∈ Instances :

∧ MultiPaxos(o) !Chosen(i , c1)
∧ MultiPaxos(o) !Chosen(j , c2)
∧ i < j

Have the commands in cs been chosen in instances of object o?

Chosen(cs, o)
∆
=

∀ c ∈ cs : ∃ i ∈ Instances : MultiPaxos(o) !Chosen(i , c)

A simplified correctness property: any two commands are ordered in the same way by the
MultiPaxos instances corresponding to objects that both commands access. This correctness
property is satisfied only if no duplicate commands can be chosen.

CorrectnessSimple
∆
=

∀ c1, c2 ∈ Commands : ∀ o1, o2 ∈ AccessedBy(c1) ∩AccessedBy(c2) :
∧ ChosenInOrder2(c1, c2, o1)
∧ Chosen({c1, c2}, o2)

21

⇒ ChosenInOrder2(c1, c2, o2)

A more complex correctness condition that is satisfied by the spec, even in the presence of duplicate

commands

Removing duplicates from a seqence

recursive RemDupRec(,)
RemDupRec(es, seen)

∆
=

if es = 〈〉
then 〈〉
else
if es[1] ∈ seen
then RemDupRec(Tail(es), seen)
else 〈es[1]〉 ◦ RemDupRec(Tail(es), seen ∪ {es[1]})

RemDup(es)
∆
= RemDupRec(es, {})

For each object, the sequence of commands chosen with duplicates removed.

ChosenCmds
∆
= [o ∈ Objects 7→

let s
∆
= [i ∈ Instances 7→

if ∃ c ∈ propCmds : MultiPaxos(o) !Chosen(i , c)
then choose c ∈ propCmds : MultiPaxos(o) !Chosen(i , c)
else None]

in RemDup(s)]

The image of a function.

Image(f)
∆
= {f [x] : x ∈ domain f }

Has c1 been chosen before c2 for object o?

ChosenInOrder(c1, c2, o)
∆
=

let s
∆
= ChosenCmds[o]

in
∧ {c1, c2} ⊆ Image(s)
∧ ∀ i , j ∈ domain s :

s[i] = c1 ∧ s[j] = c2⇒ i ≤ j

Correctness: if two commands have been ordered for two different objects, then their order is the

same.

Correctness
∆
= ∀ c1, c2 ∈ Commands :

∀ o1, o2 ∈ AccessedBy(c1) ∩AccessedBy(c2) :
(∀ o ∈ {o1, o2} :

c1 ∈ Image(ChosenCmds[o]) ∧ c2 ∈ Image(ChosenCmds[o]))
⇒ (ChosenInOrder(c1, c2, o1) = ChosenInOrder(c1, c2, o2))

theorem Spec ⇒ 2Correctness

22

The spec above cannot be used with TLC because TLC does not accept statements like fun[x]′ = y
(updating the value of a function on just a subset of its domain), and that’s what happens when
we reuse the specification of MultiPaxos. Below is a second version of the spec, which should be
equivalent to the one above, and which can be model-checked with TLC .

JoinBallot2(a, o, b)
∆
=

∧ ballots ′ = [ballots except ! [o] = [ballots[o] except ! [a] = b]]
∧ unchanged votes
∧ MultiPaxos(o) !JoinBallot(a, b)

Vote2(c, a)
∆
=

Vote for c in all of the instances of c’s objects:

∧ ∃ is ∈ [AccessedBy(c)→ Instances] :
∧ ∀ obj ∈ AccessedBy(c) : is[obj] ≤ NextInstance(obj)
∧ votes ′ = [o ∈ Objects 7→

if o ∈ AccessedBy(c)
then

[votes[o] except ! [a] = [@ except ! [is[o]] =
if ballots[o][a] 6= − 1
then [@ except ! [ballots[o][a]] = c]
else @]]

else votes[o]]
∧ unchanged ballots
Only do the updates above if all of the instances can take the transition according to MultiPaxos:

∧ ∀ o ∈ AccessedBy(c) : ∃ i ∈ Instances :
MultiPaxos(o) !Vote(a, c, i)

An equivalent version of Next which can be used with TLC

Next2
∆
=

∨ ∃ o ∈ Objects : ∃ a ∈ Acceptors : ∃ b ∈ Ballots :
JoinBallot2(a, o, b)

∨ ∃ c ∈ Commands : ∃ a ∈ Acceptors :
Vote2(c, a)

∨ ∃ c ∈ V : Propose(c)

Spec2
∆
= Init ∧2[Next2]〈ballots, votes, propCmds〉

Model-checking results:

Model: 3 acceptors, 2 objects, 2 commands (1 accessing both, 1 accessing only 1 object), majority

quorums, 3 ballots, 3 instances.

Checked CorrectnessSimple.

State constraint to avoid duplicate commands and overflows caused by accessing
votes[a][o][NextInstance(i)] when all instances are complete:

∧ ∀ o ∈ Objects : ∃ i ∈ Instances : ¬Complete(o, i)

23

∧ ∀ o ∈ Objects : ∀ a ∈ Acceptors : ∀ i ∈ Instances : ∀ c ∈ Commands :

¬MultiPaxos(o) !Chosen(i , votes[o][a][i])

Running on 48 Xeon cores with 120GB of memory.

Exhaustive exploration completed: 674414109 states generated, 48486426 distinct states found.
The depth of the complete state graph search is 31.

24

module DistributedMultiPaxos

A specification of MultiPaxos that includes a model of the network. Compared to the abstract
specification, processes now communicate through the network instead of directly reading each
other’s state. The main difference is that network messages reflect a past state of their sender, not
its current state. Note that since the state of the processes is monothonic (i .e. values written in
the vote array are never overwritten and ballots on increase), knowing the past state gives some

information about the current state.

extends MultiConsensus

variables
ballot , vote, network , propCmds

We do not model learners, so no need for 2b messages

Msgs
∆
=

{〈“1a”, b〉 : b ∈ Ballots} ∪
{〈“1b”, a, i , b, 〈maxB , v〉〉 : i ∈ Instances, a ∈ Acceptors,

b ∈ Ballots, maxB ∈ Ballots ∪ { − 1}, v ∈ V ∪ {None}} ∪
{〈“2a”, i , b, v〉 : i ∈ Instances, b ∈ Ballots, v ∈ V }

Init
∆
=
∧ ballot = [a ∈ Acceptors 7→ − 1]
∧ vote = [a ∈ Acceptors 7→

[i ∈ Instances 7→
[b ∈ Ballots 7→ None]]]

∧ network = {}
∧ propCmds = {}

TypeInv
∆
=

∧ ballot ∈ [Acceptors → {− 1} ∪ Ballots]
∧ vote ∈ [Acceptors →

[Instances →
[Ballots → {None} ∪V]]]

∧ network ⊆ Msgs
∧ propCmds ⊆ V

Propose(c)
∆
=

∧ propCmds ′ = propCmds ∪ {c}
∧ unchanged 〈ballot , vote, network〉

Phase1a(b)
∆
=

∧ network ′ = network ∪ {〈“1a”, b〉}
∧ unchanged 〈ballot , vote, propCmds〉

A pair consisting of the highest ballot in which the acceptor a has voted in instance i . If a has

not voted in instance i , then 〈 − 1, None〉.
MaxAcceptorVote(a, i)

∆
=

25

let maxBallot
∆
= Max ({b ∈ Ballots : vote[a][i][b] 6= None} ∪ { − 1}, ≤)

v
∆
= if maxBallot > − 1 then vote[a][i][maxBallot] else None

in 〈maxBallot , v〉

Acceptor a receives responds from a 1a message by sending, for each instance i , its max vote in

this instance.

Phase1b(a, b, v)
∆
=

∧ ballot [a] < b
∧ 〈“1a”, b〉 ∈ network
∧ ballot ′ = [ballot except ! [a] = b]
∧ network ′ = network ∪

{〈“1b”, a, i , b, MaxAcceptorVote(a, i)〉 : i ∈ Instances}
∧ unchanged 〈vote, propCmds〉

1bMsgs(b, i , Q)
∆
=

{m ∈ network : m[1] = “1b” ∧m[2] ∈ Q ∧m[3] = i ∧m[4] = b}

The vote cast in the highest ballot less than b in instance i . This vote is unique because all ballots

are conservative. Note that this can be None.

MaxVote(b, i , Q)
∆
=

let maxBal
∆
= Max ({m[5][1] : m ∈ 1bMsgs(b, i , Q)}, ≤)

in choose v ∈ V ∪ {None} : ∃m ∈ 1bMsgs(b, i , Q) :
∧ m[5][1] = maxBal ∧m[5][2] = v

The leader of ballot b sends 2a messages when it is able to determine a safe value (i .e. when it

receives 1b messages from a quorum), and only if it has not done so before.

Phase2a(b, i , v)
∆
=

∧ ¬(∃m ∈ network : m[1] = “2a” ∧m[2] = i ∧m[3] = b)
∧ ∃Q ∈ Quorums :

∧ ∀ a ∈ Q : ∃m ∈ 1bMsgs(b, i , Q) : m[2] = a
∧ let maxV

∆
= MaxVote(b, i , Q)

safe
∆
= if maxV 6= None then {maxV } else propCmds

in ∧ v ∈ safe
∧ network ′ = network ∪ {〈“2a”, i , b, v〉}

∧ unchanged 〈propCmds, ballot , vote〉

Vote(a, b, i)
∆
=

∧ ballot [a] = b
∧ ∃m ∈ network :

∧ m[1] = “2a” ∧m[2] = i ∧m[3] = b
∧ vote ′ = [vote except ! [a] = [@ except ! [i] =

[@ except ! [b] = m[4]]]]
∧ unchanged 〈propCmds, ballot , network〉

Next
∆
=
∨ ∃ c ∈ V : Propose(c)

26

∨ ∃ b ∈ Ballots : Phase1a(b)
∨ ∃ a ∈ Acceptors, b ∈ Ballots, v ∈ V : Phase1b(a, b, v)
∨ ∃ b ∈ Ballots, i ∈ Instances, v ∈ V : Phase2a(b, i , v)
∨ ∃ a ∈ Acceptors, b ∈ Ballots, i ∈ Instances : Vote(a, b, i)

Spec
∆
= Init ∧2[Next]〈propCmds, ballot, vote,network〉

MultiPaxos
∆
= instance MultiPaxos

theorem Spec ⇒ MultiPaxos !Spec

27

module DistributedGFPaxos

A distributed specification of GFPaxos, using DistributedMultiPaxos.tla.

extends MultiConsensus, Objects

variables
ballots, votes, network , propCmds

assume Instances ⊆ Nat \ {0}

assume Commands = V

DistMultiPaxos(o)
∆
= instance DistributedMultiPaxos with

ballot ← ballots[o],
vote ← votes[o],
network ← network [o]

Is instance i of object o complete?

Complete(o, i)
∆
=

∃ v ∈ V : DistMultiPaxos(o) !MultiPaxos !Chosen(i , v)

The next undecided instance for object o:

NextInstance(o)
∆
=

let completed
∆
= {i ∈ Instances : Complete(o, i)}

in if completed 6= {}
then Max (completed , ≤) + 1
else Max (Instances, ≥) the minimum instance

Msgs
∆
= DistMultiPaxos(choose o ∈ Objects : true) !Msgs

A type invariant.

TypeInv
∆
=

∧ ballots ∈ [Objects → [Acceptors → {− 1} ∪ Ballots]]
∧ votes ∈ [Objects → [Acceptors →

[Instances →
[Ballots → {None} ∪V]]]]

∧ network ∈ [Objects → subset Msgs]
∧ propCmds ⊆ V

InitBallot
∆
= [a ∈ Acceptors 7→ − 1]

InitVote
∆
= [a ∈ Acceptors 7→ [i ∈ Instances 7→ [b ∈ Ballots 7→ None]]]

The initial state.

Init
∆
=
∧ ballots = [o ∈ Objects 7→ InitBallot]
∧ votes = [o ∈ Objects 7→ InitVote]

28

∧ propCmds = {}
∧ network = [o ∈ Objects 7→ {}]

The actions.

Propose(c)
∆
=

∧ propCmds ′ = propCmds ∪ {c}
∧ unchanged 〈ballots, votes, network〉

Phase1a(c)
∆
=

∧ ∃ bs ∈ [Objects → Ballots] :
network ′ = [o ∈ Objects 7→

if o ∈ AccessedBy(c)
then network [o] ∪ {〈“1a”, bs[o]〉}
else network [o]]

∧ unchanged 〈ballots, votes, propCmds〉

Phase1b(o, a, c)
∆
=

∧ ∃ b ∈ Ballots : DistMultiPaxos(o) !Phase1b(a, b, c)
∧ ∀ obj ∈ Objects \ {o} : unchanged 〈ballots[obj], votes[obj], network [obj]〉

The Phase2a(c) action.

NextInstance could be computed from the 1b messages. For simplicity, we reuse the
NextInstance() operator.

Phase2a(c)
∆
=

∧ ∀ o ∈ AccessedBy(c) : ∃ b ∈ Ballots :
DistMultiPaxos(o) !Phase2a(b, NextInstance(o), c)

∧ ∀ o ∈ Objects \AccessedBy(c) : unchanged 〈network [o]〉
∧ unchanged 〈propCmds, ballots, votes〉

Vote(a, c)
∆
=

∧ ∀ o ∈ AccessedBy(c) : ∃ b ∈ Ballots, i ∈ Instances :
DistMultiPaxos(o) !Vote(a, b, i)

∧ ∀ o ∈ Objects \AccessedBy(c) : unchanged votes[o]
∧ unchanged 〈ballots, network , propCmds〉

Next
∆
=

∃ c ∈ Commands : Propose(c) ∨ Phase1a(c) ∨ Phase2a(c)
∨ ∃ a ∈ Acceptors, o ∈ Objects : Phase1b(o, a, c) ∨Vote(a, c)

Spec
∆
= Init ∧2[Next]〈ballots, votes,network , propCmds〉

GFPaxos
∆
= instance GFPaxos

theorem Spec ⇒ GFPaxos !Spec

29

The spec above cannot be used with TLC because TLC does not accept statements like fun[x]′ = y
(updating the value of a function on just a subset of its domain), and that’s what happens when
we reuse the specification of MultiPaxos. Below is a second version of the spec, which should be
equivalent to the one above, and which can be model-checked with TLC .

Phase1b2(o, a, c)
∆
=

∧ ∃ b ∈ Ballots :
∧ ballots[o][a] < b
∧ 〈“1a”, b〉 ∈ network [o]

∧ let obal
∆
=

choose b ∈ Ballots :
∧ ballots[o][a] < b
∧ 〈“1a”, b〉 ∈ network [o]

in
∧ ballots ′ = [obj ∈ Objects 7→

if obj = o
then [ballots[o] except ! [a] = obal]
else ballots[obj]]

∧ network ′ = [obj ∈ Objects 7→
if obj = o
then network [o] ∪
{〈“1b”, a, i , obal , DistMultiPaxos(o) !MaxAcceptorVote(a, i)〉 : i ∈ Instances}

else network [obj]]
∧ unchanged 〈votes, propCmds〉
∧ ∃ b ∈ Ballots :

DistMultiPaxos(o) !Phase1b(a, b, c)

Phase2a2(c)
∆
=

let OkForObj (o, b, Q)
∆
=

∧ ¬(∃m ∈ network [o] : m[1] = “2a” ∧m[2] = NextInstance(o) ∧m[3] = b)
∧ ∀ a ∈ Q : ∃m ∈ DistMultiPaxos(o) !1bMsgs(b, NextInstance(o), Q) : m[2] = a

in
∧ propCmds 6= {}
∧ ∀ o ∈ AccessedBy(c) : ∃ b ∈ Ballots, Q ∈ Quorums : OkForObj (o, b, Q)
∧ let qs

∆
= [o ∈ AccessedBy(c) 7→ choose q ∈ Ballots ×Quorums :

OkForObj (o, q [1], q [2])]
safe

∆
= [o ∈ AccessedBy(c) 7→

let maxV
∆
= DistMultiPaxos(o) !MaxVote(qs[o][1], NextInstance(o), qs[o][2])

in if maxV 6= None then {maxV } else propCmds]
in network ′ = [o ∈ Objects 7→

if o ∈ AccessedBy(c)
then

if c ∈ safe[o]
then network [o] ∪ {〈“2a”, NextInstance(o), qs[o][1], c〉}
else network [o] ∪ {〈“2a”, NextInstance(o), qs[o][1], choose v ∈ safe[o] : true〉}

else network [o]]

30

∧ unchanged 〈propCmds, ballots, votes〉
∧ ∀ o ∈ AccessedBy(c) : ∃ b ∈ Ballots :

DistMultiPaxos(o) !Phase2a(b, NextInstance(o), c)

Vote2(a, c)
∆
=

∧ ∀ o ∈ AccessedBy(c) : ∃ i ∈ Instances :
∃m ∈ network [o] : m[1] = “2a” ∧m[2] = i ∧m[3] = ballots[o][a] ∧m[4] = c

∧ let is
∆
= [o ∈ AccessedBy(c) 7→
choose i ∈ Instances :
∃m ∈ network [o] : m[1] = “2a” ∧m[2] = i ∧m[3] = ballots[o][a] ∧m[4] = c]

in
∧ votes ′ = [o ∈ Objects 7→

if o ∈ AccessedBy(c)
then [votes[o] except ! [a] = [@ except ! [is[o]] = [@ except ! [ballots[o][a]] = c]]]
else votes[o]]

∧ unchanged 〈ballots, network , propCmds〉

Next2
∆
=

∃ c ∈ Commands : Propose(c) ∨ Phase1a(c) ∨ Phase2a2(c)
∨ ∃ a ∈ Acceptors, o ∈ Objects : Phase1b2(o, a, c) ∨Vote2(a, c)

Spec2
∆
= Init ∧2[Next2]〈ballots, votes,network , propCmds〉

Model-checking results:

Configuration: 2 objects, 2 commands (one accessing both objects, one accessing only one object),

3 acceptors, majority quorums, 2 ballots, 2 instances per object.

Verified that Spec2⇒ GFPaxos !Spec. Running on 48 Xeon cores with 120GB of memory, it took
13 minutes. Result:

Model checking completed. No error has been found. Estimates of the probability that TLC did
not check all reachable states because two distinct states had the same fingerprint: calculated
(optimistic): val = 1.8E − 6 based on the actual fingerprints: val = 1.3E − 6

32992499 states generated, 1026307 distinct states found, 0 states left on queue. The depth of

the complete state graph search is 30.

31

