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1 Introduction16

Consider the consensus problem as traditionally presented [10]: n processes in a distributed17

system each propose an arbitrary value and must then arrive (except those that fail) at a18

consensus (i.e. an agreement) on one of them. Solving consensus matters, because it allows19

a distributed system to function and coordinate its actions.20

Now consider an open system where participants do not know each other and may have21

different objectives. In this case, global agreement as per the traditional notion of consensus22

from [10] might not be relevant, or even desirable: instead, participants might wish to agree23

with one or more sets of trusted participants whom they care about or otherwise share a24

common objective with — and participants make independent decisions on whom to trust.25

We call such a system heterogeneous. So what is a sensible definition of the consensus26

problem in the heterogeneous setting?27

In this paper, we propose to model heterogeneous systems using the new notion of28

semitopological space and we propose to define the consensus problem as the problem of29

computing a continuous function on the semitopological space.30

The difference between semitopology and topology is that in semitopologies we drop the31

requirement that intersections of open sets be open. We develop a theory of semitopologies,32

thus casting a new light on, and giving a (we would argue) very clear new language for33

discussions about, the essential distributed-computing problem of consensus. Notably:34

1. Whereas topology often studies spaces with strong separability properties between points35

(like Hausdorff separability), in a semitopological space it seems interesting to study36

points that cannot be separated. We state and discuss a novel anti-separation axiom37

which we call being intertwined (see Definition 13 and Remark 14).38

2. A semitopological space partitions itself naturally into a collection of disjoint sets which39

we call topens (for transitive open set; Definition 6 and Remark 12) on which values of40

continuous functions are strongly correlated. Thus semitopologies articulate, in a clear41

and familiar topological language, mathematical reasons that a heterogeneous consensus42

system is likely to self-partition into unanimous communities (Theorems 18 and 27).43
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3. A substantial body of topology-flavoured results can now be developed. See for example44

the characterisation of topen sets and the two ways to build a closure from a point as45

summarised in Theorems 18 and 27 and Remark 28 (see also Subsection 6.2).46

4. Although semitopologies are not inherently computational — a semitopology is just a set47

of points and open sets on those points — the definitions support a natural computational48

structure which we call a witness function (Definition 29(1)), which is related to event49

structures [19]. This gives open and closed sets, and the topens mentioned above,50

computational content in a way that we make mathematically precise (Propositions 4251

and 36), culminating with a compactness result (Theorem 43).52

5. We discuss connections with related work in Subsection 6.1 (notably: event structures,53

consensus tasks, algebraic topology, and fail-prone systems and quorum systems).54

Finally, note that semitopology is practically motivated: it is in use since 2015 in the55

Stellar payments network [11], whose notion of Federated Byzantine Agreement System [15]56

is an example of semitopological space.57

2 Semitopology58

A semitopology is like a topology, minus the condition that the intersection of two open sets59

be an open set, and continuity can be identified with consensus:60

▶ Definition 1. A semitopological space, or just semitopology, is a pair (P, Open(P)) of61

a nonempty set P of points, and a set Open(P) ⊆ pow(P) of open sets, such that:62

1. ∅ ∈ Open(P) and P ∈ Open(P).63

2. If X ⊆ Open(P) then
⋃

X ∈ Open(P).64

We may write Open(P) just as Open, if P is irrelevant or understood.65

▶ Definition 2 (Continuity). If P and P′ are sets and f : P → P′ and O′ ⊆ P′ then define the66

inverse image by f -1(O′) = {p∈P | f(p) ∈ O′}.67

If (P, Open) and (P′, Open′) are semitopological spaces then call f : P → P′ continuous68

when O′ ∈ Open′ implies f -1(O′) ∈ Open.69

▶ Remark 3 (Continuity=consensus). We can identify consensus as the instance of continuity70

in which we map from a semitopology to a discrete semitopology of values.71

To see why, consider a semitopology (P, Open) and view p ∈ P as participants and open72

neighbourhoods p ∈ O ∈ Open as quorums of p — that is, p ∈ O ∈ Open indicates that O73

is a set that p would be willing to agree or cooperate with. Give some set Val of values or74

beliefs the discrete semitopology such that {v} is open for every v ∈ Val (Example 4(1)).75

Then having consensus amongst the P regarding a suitable value Val can be identified76

with having a continuous function f from P to Val because:77

f assigns a value or belief to each p ∈ P, and78

continuity asserts that for every value or belief v ∈ Val, each p ∈ f -1(v) is contained in a79

(by continuity) open set f -1(v) of peers that it is willing to agree or cooperate with, and80

which (by f) agree with p that v.181

(We briefly discuss in Subsection 6.2 how one might set about computing such an f .)82

1 The astute reader may notice that we sweep some things under the rug. How do we compute these
functions? See Subsection 6.2. What about failures and Byzantine participants? Well, our slogan
‘continuity=consensus’ is a simplification, though a constructive and useful one; e.g. Byzantine behaviour
can be modelled with partiality or discontinuity. More in longer paper.
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▶ Example 4. Examples of semitopologies include:83

1. The discrete semitopology on nonempty P just takes Open = pow(P). We may silently84

treat B = {⊥, ⊤} as a discrete semitopological space.85

Any function from a discrete semitopology is continuous, and intuitively, participants86

only care to agree with themselves and nobody cares what anybody else thinks.87

2. Take P to be any nonempty set. The trivial semitopology on P takes Open = {∅, P}.88

Only constant functions are continous, and intuitively, participants want to agree with89

everyone; if someone objects, we do not have an open set nor a continuous function.90

3. Let P be people in a town with one cinema and O ∈ Open the semitopology generated by91

groups of friends willing to coordinate to go see a movie together. Then Open describes92

the sets of people that can be found inside the cinema.93

4. Take P = {0, 1, . . . , 41}. The supermajority semitopology takes Open = {O ⊆ P |94

#O ≥ 28}. So an open set contains at least two-thirds of the points; 2/3 participation is95

a typical threshold used for making progress in consensus algorithms.296

The supermajority semitopology captures that consensus is reached when a clear 2/397

majority of participants are in agreement. This is not a topology: that O and O′ contain98

at least two-thirds of the points in P does not mean their intersection O ∩ O′ does.99

5. Let O ⊆ P be open when O = ∅ or #O = #P (e.g. if P = N then {n | n even} and100

{n | n odd} are open). This many semitopology is not a topology.101

6. Let O ⊆ P be open when O = ∅ or O = P or O = P \ {p} for any p ∈ P . Intuitively, in102

this lone objector semitopology (which is not a topology), participants are deemed to have103

reached consensus when there is at most one objector.104

7. Consider any L-labelled automaton A (by which here we mean: a rooted directed graph105

with labels from L). Let P be finite (possibly empty) lists of elements from L and let a set106

be open when it is a union of sets of finite initial segments of an infinite path through A.107

To make this concrete: take A to have one node, and two edges labelled 0 and 1. Then108

{[], [0], [0, 1], [0, 1, 0], [0, 1, 0, 1], . . . } is an open set, obtained as finite approximations109

to the path 0, 1, 0, 1, . . . . In this semitopology, ‘participants’ are finite approximations,110

and a set is open when it is a union of sequences of participants, with each sequence111

appoximating some infinite limit.112

3 Transitive sets and (maximal) topen sets113

▶ Definition 5. Suppose X, Y , and Z are sets. Write X ≬ Y and say that X and Y114

intersect when X ∩ Y ̸= ∅. We may chain ≬, writing e.g. X ≬ Y ≬ Z for X ≬ Y ∧ Y ≬ Z.115

▶ Definition 6. Suppose (P, Open) is a semitopology and S ⊆ P. Call S transitive when116

∀O, O′∈Open.O ≬ S ≬ O′ =⇒ O ≬ O′ and call S a (maximal) topen when S is a (maximal)117

nonempty open and transitive set.3118

Values of continuous functions are strongly correlated on transitive sets (thus topens):119

▶ Proposition 7. Suppose (P, Open) is a semitopology and Val is a set of values (e.g.B or120

N) with the discrete semitopology (Example 4(1)), and suppose f : P → Val is continuous121

(Definition 2) and S ⊆ P is transitive (usually, S will be topen). Then f is constant on S.122

2 The procedural threshold in the US Senate is often set to two-thirds of the Senators present and voting.
3 ‘Transitive open’ → ‘topen’, like ‘closed and open’ → ‘clopen’.

CVIT 2016
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Proof. Suppose p, p′ ∈ S and write v = f(p) and v′ = f(p′). By construction f -1(v) ≬ S ≬123

f -1(v′). Therefore f -1(v) ≬ f -1(v′), by transitivity of S. This means precisely that there124

exists p′′ such that v = f(p′′) = v′, and so v = v′. ◀125

▶ Example 8. 1. {p} and ∅ are (trivially) transitive, for any p ∈ P.126

2. If S ⊆ P is topologically indistinguishable (∀O∈Open.(S≬O =⇒ S⊆O)) then S is transitive.127

3. Take P = {0, 1, 2, . . . } and let open sets be ∅, P, and sets On = {n × i | i ≥ 1} for every128

n ≥ 1. This has one maximal topen O1 = {1, 2, . . . }, and one isolated point 0.129

4. Take P = {-1, 0, 1}, with open sets ∅, P, {-1}, {-1, 0}, {1}, {0, 1}, and {-1, 1}. This has130

two maximal topens {-1} and {1}, and 0 is not in any topens.131

▶ Lemma 9. Suppose (P, Open) is a semitopology.132

1. If S, S′ ⊆ P are topen then ∀O, O′ ∈ Open.O ≬ S ≬ S′ ≬ O′ =⇒ O ≬ O′.133

2. If S is a set of topens that are pairwise intersecting (so ∀S, S′∈S.S≬S′) then
⋃

S is topen.134

Proof. 1. We simplify using Definition 6:

O ≬ S ≬ S′ ≬ O′ =⇒ O ≬ S′ ≬ O′ S transitive, S′ open
=⇒ O ≬ O′ S′ transitive.

2.
⋃

S is open by Definition 1(2). Also, if O ≬
⋃

S ≬ O′ then there exist S, S′ ∈ S such that135

O ≬ S and S′ ≬ O′. We assumed S ≬ S′, so by part 1 of this result we have O ≬ O′. ◀136

▶ Remark 10. We care about topens (rather than sets that are just transitive) because they137

have somewhat better closure properties. E.g. Lemma 9 fails for transitive sets in general:138

if P = {1, 2, 3} and Open = {∅, P, {2}, {3}, {2, 3}} then {1, 2} and {1, 3} are transitive, but139

their union {1, 2, 3} is not. There is fine structure to these results, which we will document140

in a longer paper.141

▶ Corollary 11. If (P, Open) is a semitopology then every topen S ⊆ P is contained in a142

unique maximal topen M ⊇ S.143

Proof. Consider S = {S ∪ S′ | S′ topen ∧ S ≬ S′}. By Lemma 9(2) this is a set of topens and144

by Lemma 9(2) again so is
⋃

S. It is easy to check that this is a unique maximal transitive145

open set that contains S. ◀146

▶ Remark 12. We see from Corollary 11 above that a semitopology (P, Open) naturally147

partitions itself into some disjoint collection of maximal topens, and other points not148

contained in any topen.4149

Combining this with Proposition 7 we see that consensus on a semitopology self-organises150

into partitions of strongly correlated points acting together, along with some isolated points.151

In the special case of a space that is a single finite topen, then all participants must agree.152

▶ Definition 13. Suppose (P, Open) is a semitopology and p, p′ ∈ P.153

1. Call p and p′ intertwined when {p, p′} is transitive. Unpacking Definition 6 this means154

∀O, O′∈Open.(p ∈ O ∧ p′ ∈ O′) =⇒ O ≬ O′. By a mild abuse of notation, write p ≬ p′
155

when p and p′ are intertwined.156

2. Define p≬ = {p′ ∈ P | p ≬ p′}. So p≬ is the points intertwined with p.157

4 This raises the question of what those other points can look like topologically. One answer is implicit in
Theorem 18, if we consider the topological boundary of a maximal topen. Or, a point can simply be
isolated. See Example 8, items 3 and 4. A more detailed analysis is possible but out of scope here.
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▶ Remark 14. The reader can check that the usual Hausdorff separation axiom can be158

succinctly written as ∀p.p≬ = {p}. Conversely, p ≬ p′ for p ̸= p′ is the very opposite to being159

Hausdorff: that p and p′ they cannot be separated by pairwise disjoint open sets.5160

For semitopologies as applied to consensus, Hausdorff makes a space separated and161

liable to non-consensus. Conversely, to maximise consensus and minimise separation — the162

literature might call this avoiding forking — we may prefer a space to be very intertwined.163

▶ Lemma 15. Suppose (P, Open) is a semitopology and S ⊆ P. Then S is transitive if and164

only if ∀p, p′∈S.p ≬ p′. In words: a set is transitive when it is pointwise intertwined.165

▶ Corollary 16. Suppose (P, Open) is a semitopology and S ⊆ P. Then the following166

assertions are equivalent:167

1. S is topen.168

2. S is nonempty, open, and p ≬ p′ for every p, p′ ∈ S.169

3. S is nonempty, open, and S ⊆ p≬, for some/any element p ∈ S.170

In words: A topen set is a nonempty open set of intertwined points.171

Proof. By Definition 6, S is topen when it is nonempty, open, and transitive. By Lemma 15172

this last condition is equivalent to p ≬ p′ for every p, p′ ∈ S. Thus parts 1 and 2 are equivalent.173

By Definition 13(2) p≬ = {p′ | p ≬ p′}, so part 3 just rephrases part 2. ◀174

▶ Definition 17. Suppose (P, Open) is a semitopology and R ⊆ P. Define the interior of R175

by interior(R) =
⋃

{O ∈ Open | O ⊆ R}.176

▶ Theorem 18 (Characterisation of topens). Suppose (P, Open) is a semitopology and S ⊆ P.177

Then the following are equivalent:178

S is a maximal topen.179

S is nonempty and S = interior(p≬) for some/any element p ∈ S.180

In words: A maximal topen is the nonempty open interior of p≬.181

Proof. From Corollary 16 using Definition 6. ◀182

4 Closed sets and interiors183

4.1 Basic definitions (TL;DR: this part is just like topology)184

▶ Definition 19. Suppose (P, Open) is a semitopology and p ∈ P and R ⊆ P. Define the185

closure of R by |R| = {p′ ∈ P | ∀O′∈Open.p′ ∈ O′ =⇒ R ≬ O′}.186

We may write |p| for |{p}|, so |p| = {p′ ∈ P | ∀O′∈Open.p′ ∈ O′ =⇒ p ∈ O′}.187

Call C closed when C = |C|, and write Closed(P) for the set of closed sets.188

Closed sets are complements of open sets, and open/closed sets are interiors/closures189

of closed/open sets — just like in topologies. We check that this works as expected in190

Lemma 20, Corollary 21, and Lemma 22:191

▶ Lemma 20. Suppose (P, Open) is a semitopology. Then C ∈ Closed(P) is closed if and192

only if P \ C is open, and O ∈ Open is open if and only if P \ O is closed.193

Proof. 1. Suppose p ∈ P \ C. Since C = |C|, p ∈ P \ |C|. From Definition 19 there exists194

O ∈ P with p ∈ O and O ∩ C = ∅, and this is the openness condition from Definition 30.195

5 One might call this an anti-Hausdorff property.

CVIT 2016
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2. Suppose O ∈ Open. It follows from Definition 19 that O ∩ |P \ O| = ∅. But (as can be196

checked from routine calculations) P \ O ⊆ |P \ O|. ◀197

▶ Corollary 21. Suppose (P, Open) is a semitopology. Then Closed(P ) contains ∅ and P198

and is closed under arbitrary intersections. Furthermore, |R| equals the intersection of the199

closed sets that contain it: |R| =
⋂

{C ∈ Closed | R ⊆ C}.200

Proof. The first assertion is immediate from Lemma 20. The second follows from Lemma 20201

and Definition 1(1&2). The third assertion follows from the second. ◀202

▶ Lemma 22. Suppose (P, Open) is a semitopology. Then O ∈ Open is open if and only if203

interior(|O|) = O, and C ∈ Closed is closed if and only if |interior(C)| = C.204

Proof. Routine from Definitions 17 and 19. ◀205

4.2 Intertwined elements and topens206

Recall from Definition 13 the notions of p ≬ p′ and p≬.207

▶ Lemma 23. Suppose (P, Open) is a semitopology and p, p′ ∈ P. Then:208

1. p ≬ p′ when ∀O∈Open.p ∈ O =⇒ p′ ∈ |O|.209

2. p≬ =
⋂

{|O| | p ∈ O ∈ Open} =
⋂

{C ∈ Closed | p ∈ interior(C)}.210

3. p≬ is closed and (by Lemma 20) P \ p≬ is open.211

Proof. 1. We just rearrange Definition 13:

∀O, O′ ∈ Open.(p ∈ O ∧ p′ ∈ O′) =⇒ O ≬ O′ rearranges to
∀O ∈ Open.p ∈ O =⇒ ∀O′ ∈ Open.p′ ∈ O′ =⇒ O ≬ O′ and by Definition 19 this is
∀O ∈ Open.p ∈ O =⇒ p′ ∈ |O|.

2. Using part 1, then Lemma 22.212

3. We combine part 2 of this result with Corollary 21. ◀213

▶ Lemma 24. Suppose (P, Open) is a semitopology and S ⊆ P is topen and p ∈ S. Then214

|p| ⊆ p≬ = |S|, and the subset inclusion may be strict (that is, |p| ≠ p≬ is possible).215

Proof. p≬ = |S| follows using Theorem 18. For the subset inclusion, by Corollary 21(3)
|p| = |{p}| =

⋂
{C ∈ Closed | p ∈ C} and also by Lemma 23(2) p≬ =

⋂
{C ∈ Closed | p ∈

interior(C)}. We note that if p ∈ interior(C) then p ∈ C, so that

{C | p ∈ interior(C)} ⊆ {C | p ∈ C} and so
⋂

{C | p ∈ interior(C)} ⊇
⋂

{C | p ∈ C}.

Example 25 shows that |p| ≠ p≬ can hold: ◀216

▶ Example 25. Take P = {0, 1} and Open = {∅, {0}, {0, 1}}. Then |1| ≠ 1≬:217

|1| = {1} ({0} is open), but218

1≬ = {0, 1} (open neighbourhoods of 0 and 1 all intersect).219

Lemma 26 complements Lemma 24:220

▶ Lemma 26. Suppose (P, Open) is a semitopology and S ⊆ P is topen and p ∈ S and O ⊆ S.221

Then |O| = p≬ = |S|.222
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Proof. p≬ = |S| follows using Theorem 18. We now consider the left-hand equality. Unpacking
Definition 19 we have:

p ∈ |O| ⇐⇒ ∀O′∈Open.p ∈ O′ =⇒ O′ ≬ O and
p ∈ |S| ⇐⇒ ∀O′∈Open.p ∈ O′ =⇒ O′ ≬ S.

We see that it suffices to prove O′ ≬ O ⇐⇒ O′ ≬ S for any O′ ∈ Open. But this is routine:223

Suppose O′ ≬ S. By assumption S ≬ O and by transitivity of S (Definition 6) O′ ≬ O.224

Suppose O′ ≬ O. By assumption O ⊆ S, and O′ ≬ S follows. ◀225

▶ Theorem 27. Suppose (P, Open) is a semitopology and p ∈ P. Then:226

1. P \ |p| =
⋃

{O ∈ Open | p ̸∈ O}, and this is an open set.227

2. P \ p≬ =
⋃

{C ∈ Closed | p ̸∈ C}, and this is an open set.228

3. P \ p≬ ⊆ P \ |p| and the inclusion may be strict.229

4. If interior(|p|) ̸= ∅ (so |p| has a nonempty open interior) then |p| = p≬ and P\|p| = P\p≬.230

Proof. 1. Immediate from Definition 19.6 Openness is from Definition 1(2).231

2. We reason using Lemma 23(2): P \ p≬ =
⋃

{P \ |O| | p ∈ O} =
⋃

{C ∈ Closed | p ̸∈ C}.232

Openness is Lemma 23(3).233

3. From Lemma 24.234

4. From Lemma 26. ◀235

▶ Remark 28 (Summary). |p| is a closed set and is the closure of p (Definition 19: the p′
236

whose every open neighbourhood p′ ∈ O′ intersects with {p}).237

P \ |p| is the union of open sets that avoid p.238

p≬ is also a closed set and is the points intertwined with p (Definition 13(2): the p′ whose239

every open neighbourhood p′ ∈ O′ intersects with every open neighbourhood p ∈ O).240

P \ p≬ is the union of the closed sets that avoid p.241

The open interior of p≬, if non-empty, is a topen (as studied above, culminating with242

Theorem 27), and p≬ is equal to the closure of any nonempty open that it contains.243

Thus we have two ways to build a closed set from p ∈ P: from its closure |p| (Definition 19)244

which is the set of points all of whose open neighbourhoods contain p; or we can take p≬245

(Definition 13(2)) which is the set of points that are intertwined with p, which is closed by246

Lemma 23(3). Furthermore: |p| ⊆ p≬ and the reverse inclusion holds if |p| has an open interior247

(Lemmas 24 and 26); and interior(p≬) is a maximal topen if it is nonempty (Theorem 18).248

5 The witness function: computable semitopologies249

Let us recap: semitpologies are topologies without the restriction that the intersection of two250

opens be open; notions of continuity and closure carry over from topology and continuity =251

consensus; we note an anti-Hausdorff property which we call being intertwined; we characterise252

open interiors of maximal sets of intertwined sets as maximal topens which partition the space253

into blocks of consensus, in the formal sense that values of continuous functions are strongly254

correlated on each topen. This is descriptively nice, but is it compatible with algorithmic255

content? We consider this next.256

6 A longer proof via Corollary 21(3) and Lemma 20 is also possible.
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5.1 The witness function257

Write pow(X) for the powerset of X, and pow ̸=∅(X) for the nonempty powerset of X, and258

fin(X) for the finite powerset of X, and fin ̸=∅(X) for the nonempty finite powerset of X.259

▶ Definition 29. Suppose P is a set. Then:260

1. A witness function on P is a function W : P → fin ̸=∅(pow ̸=∅(P)). Call a pair (P, W )261

of a set and a witness function on that set, a witnessed set.262

2. If (P, W ) is a witnessed set and p ∈ P then call w ∈ W (p) a witness for p and say that263

w witnesses p.264

In words: a witnessed set is a set along with a witness function that assigns to each element265

of that set a nonempty finite set of nonempty (possibly infinite) witnesses.266

▶ Definition 30. Suppose (P, W ) is a witnessed set. Define the witness semitopology by

O ∈ Open(W ) when ∀p ∈ P.
(
p ∈ O =⇒ ∃w∈W (p).w ⊆ O

)
.

▶ Remark 31. Witness functions matter because they yield semitopologies with computational267

meaning, as we shall see. But before we jump into the details, we pause to reflect on how268

witness functions can be interpreted:269

1. Consensus interpretation: W represents groups of ‘immediate friends’: w ∈ W (p) is a270

group of elements that p personally trusts. An open set O is a community of participants271

such that every p ∈ O is accompanied by some group of immediate friends.272

2. Computational interpretation: W represents a nondeterministic parallel computation.273

Each p ∈ P is a process and w ∈ W (p) a parallel computation to which p can nondetermin-274

istically evolve. An open set O is a computation trace in which each p is accompanied by275

(at least one) choice of evolution w ∈ W (p).276

Example 4(7) illustrates this: e.g. for p ∈ {0, 1}∗ set W (p) = {{p + 0}, {p + 1}}. Thus p277

computes its next step by evolving either to p + 0 or p + 1, and open sets are generated by278

computations of infinite streams (this example has nondeterminism but no parallelism).279

3. Modal / event structures interpretation: W is an enabling modality. Each p ∈ P is an280

event and w ∈ W (p) is a combination of events that enable p to be possible. An open set281

O is a computation trace in which each p ∈ O is enabled by at least one w ∈ W (p).282

▶ Remark 32. Continuing the modal interpretation above, a witnessed set (P, W ) from283

Definition 29 is an infinitary generalisation of a special case of an event structure [19,284

Definition 1.1.1] — namely, it is an event structure in which the witness function plays the285

role of the enabling relation, and sets of events are generalised so they may be infinite (and286

the consistency predicate is trivial).7287

This does not make semitopologies a special case of event structures; not only because of288

the infinitary generalisation, but because we take the definitions in a new direction. It is an289

exciting possibility for future work to use this new maths to transfer ideas and algorithms290

between the two worlds— e.g. minimisation algorithms or bisimulation properties from event291

structures, or concrete algorithmics and applications from Stellar.292

5.2 The witness function and open sets293

▶ Definition 33. Suppose that (P, W ) is a witnessed set (Definition 29) and X, X ′ ⊆ P.294

Define the witness (partial) ordering by X ⪯ X ′ when X ⊆ X ′ ∧ ∀p∈X.∃w∈W (p).w ⊆295

7 A clear overview is online at https://depend.cs.uni-saarland.de/fileadmin/user_upload/depend/
neuhaeusser/concurrency_seminar_2011/event_structures.pdf; see in particular Definition 9.

https://depend.cs.uni-saarland.de/fileadmin/user_upload/depend/neuhaeusser/concurrency_seminar_2011/event_structures.pdf
https://depend.cs.uni-saarland.de/fileadmin/user_upload/depend/neuhaeusser/concurrency_seminar_2011/event_structures.pdf
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X ′. If X ⪯ X then call X a ⪯-fixedpoint.296

In words: X ⪯ X ′ when X ′ extends X with (at least) one witnesses for every p ∈ X.297

▶ Lemma 34. ⪯ is indeed a partial order (transitive possibly irreflexive relation), and ⪯ ⊆ ⊆.298

▶ Lemma 35. Suppose (P, W ) is a witnessed set. Then O is open in the witness semitopology299

(Definition 30) if and only if O is a ⪯-fixedpoint. In symbols: Open = {X ⊆ P | X ⪯ X}.300

Proof. Being a ⪯-fixedpoint from Definition 33 — every point in O is witnessed by a subset of301

O — reformulates the openness condition of the witness semitopology from Definition 30. ◀302

▶ Proposition 36. Suppose (P, W ) is a witnessed set and suppose X = (X0 ⪯ X1 ⪯ . . . ) is303

a countably ascending ⪯-chain. Write
⋃

X for the sets union
⋃

i Xi. Then:304

1.
⋃

X is a ⪯-limit for X . In symbols: ∀i.Xi ⪯
⋃

X .305

2.
⋃

X is a ⪯-fixedpoint. In symbols:
⋃

X ⪯
⋃

X .306

Proof. 1. We must show that if p ∈ Xi then w ⊆
⋃

X for some w ∈ W (p). But this is307

automatic from the fact that Xi ⪯ Xi+1 ⊆
⋃

X .308

2. From part 1 noting that if p ∈
⋃

X then p ∈ Xi for some i. ◀309

Proposition 36 and Lemma 35 above are not complicated (note that this is a feature,310

which required conscious design effort) and they say something important: in the witness311

semitopology, open sets can be computed using a simple iterative algorithm which we can312

sum up as ‘just iteratively add witnesses’.313

5.3 The witness function and closed sets314

▶ Definition 37. Suppose R is a set and W is a set (or a sequence) of sets. Define R ≬ W315

when ∀W∈W.R ≬ W . In words: R ≬ W when R intersects with every W ∈ W.316

▶ Definition 38. Suppose (P, W ) is a witnessed set and R ⊆ P. Define limw(R) by

limw(R) = R ∪ {p ∈ P | R ≬ W (p)}.

In words: limw(R) is the set of points p whose every witness contains an R-element.317

We iterate this
lim0(R) = R

limi+1(R) = limw(limi(R))
lim(R) =

⋃
n≥0 limn(R)

and we call lim(R) the set of limit points of R.318

▶ Lemma 39. Suppose (P, W ) is a witnessed set and R ⊆ P. Then R ⊆ lim(R).319

Proof. It is a fact of Definition 38 that R = lim0(R) ⊆ lim1(R) ⊆ lim(R). ◀320

▶ Lemma 40. Suppose (P, W ) is a witnessed set and p ∈ P and R ⊆ P. Then:321

1. If lim(R) ≬ W (p) (Definition 37) then p ∈ lim(R).322

2. By the contrapositive and expanding Definition 37, if p ∈ P \ lim(R) then ∃w∈W (p).w ∩323

lim(R) = ∅.324

Proof. Suppose lim(R) ≬ W (p). Unpacking Definitions 37 and 38 it follows that for every325

w∈W (p) there exists nw ≥ 0 such that limnw
(R) ≬ w. Now by Definition 29(1) W (p) is326

finite, and it follows that for some/any n greater than the maximum of all the nw, we have327

limn(R) ≬ W (p). Thus p ∈ limw(limn(R)) ⊆ lim(R). ◀328
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▶ Lemma 41. Suppose (P, W ) is a witnessed set and p ∈ P and R ⊆ P and O ∈ Open:329

1. If O ≬ limw(R) then O ≬ R.330

2. If O ≬ lim(R) then O ≬ R.331

3. As a corollary, if O ∩ R = ∅ then O ∩ lim(R) = ∅.332

Proof. 1. Consider p ∈ P such that p ∈ O and p ∈ limw(R). By assumption there exists333

w ∈ W (p) such that w ⊆ O. Also by assumption w ≬ R. It follows that O ≬ R.334

2. If O ≬ lim(R) then O ≬ limn(R) for some finite n ≥ 0. By a routine induction using part 1335

of this result, it follows that O ≬ R.336

3. This is just the contrapositive of part 2 of this result, noting that O ≬ R when O ∩ R = ∅337

by Definition 5, and similarly for O ≬ lim(R). ◀338

▶ Proposition 42. Suppose (P, W ) is a witnessed set and R ⊆ P. Then lim(R) = |R|. In339

words: the set of limit points of R (Definition 38) equals the closure of R (Definition 19).340

Proof. Suppose p ̸∈ |R|. Then there exists some p ∈ O ∈ Open such that O ∩ R = ∅.341

Thus by Lemma 41(3) also O ∩ lim(R) = ∅.342

Suppose p ̸∈ lim(R). By Definition 19 we need to exhibit an p ∈ O ∈ Open that is disjoint343

from R, and since R ⊆ lim(R) by Lemma 39, it would suffice to exhibit p ∈ O ∈ Open344

that is disjoint from lim(R). We set O = P \ lim(R). Lemma 40(2) expresses that this is345

an open set, and by construction it is disjoint from lim(R). ◀346

Proposition 42 above does for closed sets as Proposition 36 and Lemma 35 do for open347

sets: in the witness semitopology, closed sets can be computed using an iterative algorithm348

which we can sum up as ‘iteratively add points all of whose witnesses intersect’.349

5.4 Compactness of descending chains of open sets350

Intuitively, ‘compactness’ is used to indicate ‘generalising finiteness’. Theorem 43 is a351

remarkable property, that a descending chain of open sets behaves as if it were finite — even352

though it isn’t:8353

▶ Theorem 43 (Compactness of descending chains). Suppose that:354

(P, W ) is a witnessed set with the witness semitopology (Definition 30).355

α ≥ 1 is a nonzero ordinal.356

O ⊆ Open is a descending α-chain of open sets.9357

Then ⋂
O ∈ Open.

In words: in a witness semitopology, the intersection of a descending chain of open sets, is358

an open set.359

Proof. Suppose
⋂

O = ∅.360

Then we note that ∅ ∈ Open (Definition 1(1)) and we are done.361

8 One might be tempted to call this property Noetherian, since it has to do with a descending chain having
a terminator, but to us that seems not right: ‘Noetherian’ means ‘well-founded’, but infinite descending
chains of open sets are possible in a witness semitopology — they just have an open intersection. Note
also that this result says something strictly stronger than ‘every descending chain of open sets has a
greatest lower bound’; the point is that this greatest lower bound is the sets intersection on-the-nose.

9 . . . an α-indexed chain of sets such that Oα′ ⊆ Oα′′ for every 0 ≤ α′′ < α′ < α.
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Suppose α = α′+1, so that α is a successor ordinal.362

Then the sequence O has a final element Oα and by facts of sets
⋂

O = Oα ∈ Open and363

again we are done.364

Suppose α is a limit ordinal and
⋂

O ≠ ∅.365

Consider some p ∈
⋂

O. By construction of the witness semitopology (Definition 30) for366

each Oi there exists a witness wi ∈ W (p) such that wi ⊆ Oi. Now by Definition 29(1)367

W (p) is finite, so by the pigeonhole principle, there exists some w ∈ W (p) such that368

w = wi for infinitely many wi ∈ W (p) ∧ wi ⊆ Oi. It follows from the fact that O is a369

descending chain that w ⊆
⋂

O.370

Now p in the previous paragraph was arbitrary, so we have shown that if p ∈
⋂

O then371

also there exists w ∈ W (p) such that w ⊆
⋂

O. It follows by construction of the witness372

semitopology in Definition 30 that
⋂

O is open as required. ◀373

▶ Corollary 44. Suppose (P, W ) is a witnessed set with the witness semitopology. Then:374

1. Any nonempty O ⊆ Open contains a ⊆-minimal element.375

2. If p ∈ O ∈ Open then {O′ ∈ Open | p ∈ O′ ⊆ O} has a ⊆-minimal element, which we376

may call a cover of p.377

3. If p ∈ P then {O ∈ Open | p ∈ O} has a minimal element.378

Proof. Parts 2 and 3 are immediate from part 1 (noting that the sets are nonempty because379

they contain O and P respectively). For part 1 we reason as follows: It follows from380

Theorem 43 that O, ordered by the superset relation (the reverse of the subset inclusion381

relation) contains limits, and so upper bounds, of ascending chains. By Zorn’s lemma [9, 4]382

O contains a ⊇-maximal element, and this is the required ⊆-minimal element. ◀383

▶ Remark 45. It would be nice if the reverse implication in Theorem 43 held but we384

suspect that there may exist (P, Open) in which every descending chain of open sets has an385

open intersection, yet it is not obtainable as a witness semitopology. To see why, consider386

Example 4(6) and take X = N; then opens have the form ∅ or N or N \ {n}. An infinite387

set of witnesses to n is N \ {n′} for n′ ̸= n, but this is not finite as required in Definition 29.388

This example or one like it might be used for a proof of non-existence, in future work.389

We could allow an infinite set of witnesses in Definition 29, but at a price:390

Theorem 43 depends on the pigeonhole principle, which uses finiteness of the witness set.391

Lemma 40 depends on witness sets being finite, and this is required for Proposition 42.392

▶ Remark 46. Recall that in our semitopological analysis consensus is continuity, and393

continuity means that preimages of open sets are open. Thus to understand consensus near394

a point p, we need to know what the open sets containing p look like; call this informally the395

consensus neighbourhood of p.396

Theorem 43 and Corollary 44 above have specific mathematical meaning — but they397

also tell us something more general: that in a witness semitopology, we can understand398

the structure of consensus at a point p ∈ P by understanding the structure of its open399

covers, where a cover is a minimal set containing p. This is because if a continuous function400

f : P → P′ such that f(p) = p′ ∈ O′ is continuous at p ∈ P, then certainly there exists some401

open cover p ∈ O ⊆ f -1(O′). Turning this around: if we want to create consensus around p402

(e.g. because we are designing a consensus algorithm) it suffices to find some open cover of p,403

and convince that cover.404

▶ Remark 47 (Computational content of witnessed sets). A semitopology from Definition 1 is405

just some points and some open sets. This in and of itself carries no computational structure,406

and a simple example illustrates this point. Let the uncomputable semitopology have407
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P = N and have open sets generated as unions of uncomputable subsets of N. This is a408

semitopology and by design it is uncomputable. It is not a topology since the intersection of409

two uncomputable subsets need not be uncomputable.410

Witnessed sets (Definition 29) make semitopologies computationally tractable, in the411

sense made formal by Propositions 36 and 42 (which show that algorithms exist to compute412

open and closed sets) and by the remarkable Theorem 43 (which shows intuitively that413

witness semitopologies behave locally like finite sets, even if they are globally infinite).414

▶ Remark 48. We take a moment to unpack the algorithms implicit in Propositions 36 and 42.415

Consider a witnessed set (P, W ). Then:416

To compute an open set in the witness semitopology, pick some p ∈ P and set R0 = {p}.417

Once each Ri is defined, branch over all p′ ∈ Ri and for each p′ pick some witness418

w(p′) ∈ W (p′) and set Ri+1 = Ri ∪
⋃

p′∈Ri
w(p′). This algorithm is parallel and may run419

forever, but it is clearly an algorithm.420

To compute a closed set we proceed much as for the previous case, but (following421

Proposition 42 and Definition 38) we extend Ri to Ri+1 by adding those p such that422

every witness to p intersects with Ri.423

We make no claims to efficiency (we have not even set up machinery in this paper to measure424

what that would mean) but what matters is that for witness semitopologies such procedures425

exist, in contrast e.g. to the uncomputable semitopology from Remark 46.426

6 Conclusions427

6.1 Related work428

Topology429

Topologies are everywhere and we have found another one — almost, since semitopologies430

are not topologies, and the anti-separation properties which we study here seem different in431

flavour from the separation properties usually imposed in a topological context. Still, it is432

pleasing to see (yet another) application gain clarity and rigour thanks to topology-flavoured433

ideas, and to have this new mathematical structure to investigate.434

Event structures435

We discussed in Remark 32 how our notion of witness function is an infinitary generalisation of436

a special case of the enabling relation of event structures. This does not make semitopologies437

a special case of event structures, since the definitions are subtly different and we apply them438

in very different ways — but it does hold out a prospect in future work of transferring ideas439

from event structures to semitopologies, and to the instantiation of semitopologies to the440

Stellar network in particular. Perhaps also ideas may flow in the other direction as a new441

application of topology-flavoured ideas to event structures.442

The Consensus Task443

In the traditional Consensus Problem, every process proposes a value and every process must444

decide a value subject to two conditions:445

(Agreement) all processes that decide must decide the same value, and446

(Non-Triviality) every decided value must have been proposed by some process.447

The Consensus Problem can be identified as a task [6, Section 8.3.1], and in this context448

we can intuitively identify computing agreement with computing a continuous function on a449
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semitopology (possibly starting from some non-continuous starting state), and non-triviality450

with a structural property implicit in Remark 46, that (in the terminology of that Remark)451

if p outputs v, then some process in a cover of p (see Remark 46) must have received the452

input v (see also Lemma 26). This suggests:453

▶ Definition 49. Suppose (P, Open) is a finite semitopology and V is a set of values. Then454

the semitopological consensus task is the triple (I, O, ∆) where:455

I is the (pure) simplicial complex with facets simplices {(p0, v0), ..., (pn, vn)} where n = |P|,456

pi ∈ P and vi ∈ V for every 0 ≤ i ≤ n, and pi ̸= pj for every i ̸= j.457

O is the (pure) simplicial complex with facets simplices o = {(p0, v0), ..., (pn, vn)} where458

n = |P|, pi ∈ P and vi ∈ V for every 0 ≤ i ≤ n, pi ̸= pj for every i ̸= j, and o, when seen459

as a function from P to V, is a continuous function on the semitopology (P, Open).460

∆ is the function mapping i ∈ I to the (pure) simplicial complex ∆(i) ∈ 2O such that461

∆({(p0, v0), ..., (pm, vm)}), 0 ≤ m ≤ |P|, is the simplicial complex with facets simplices462

o = {(p0, w0), ..., (pm, wm)} ∈ O where, for every 0 ≤ i ≤ m, there exists a cover (minimal463

open set) O ∈ Open for pi and 0 ≤ j ≤ m such that pj ∈ O and wi = vj.464

This definition can be extended to the case in which P is infinite when (P, Open) is a465

witness semitopology from Definition 30; Corollary 44 ensures that covers exist.466

Note that in contrast to the classic consensus task, the semitopological consensus task467

is not colourless [6, Section 4.1.4] in general: e.g. if we have two disjoint topens, it matters468

which process is assigned which output value, because the two topens must agree within469

themselves but may disagree between one another.470

Algebraic topology as applied to distributed computing tasks471

Continuing the discussion of tasks above, the reader may know that solvability results about472

distributed computing tasks have been obtained from algebraic topology, starting with the473

impossibility of k-set consensus and the Asynchronous Computability Theorem [7, 1, 16] in474

1993. See [6] for numerous such results.475

The basic observation is that states of a distributed algorithm form a simplicial complex,476

called its protocol complex, and topological properties of this complex, like connectivity, are477

constrained by the underlying communication and fault model. These topological properties478

in turn can determine what tasks are solvable. For example: every algorithm in the wait-free479

model with atomic read-write registers has a connected protocol complex, and because the480

consensus task’s output complex is disconnected, consensus in this model is not solvable [6,481

Chapter 4].482

This paper is also topological, but in a different way: we use (semi)topologies to study483

consensus in and of itself, rather than the solvability of consensus or other tasks in particular484

computation models. Put another way: the papers cited above use topology to study the485

solvability of distributed tasks, but this paper shows how the very idea of ‘distribution’ can486

be viewed as a (semi)topological structure.487

Of course we can now imagine that these might be combined — that there might be488

interesting and useful things to say about the topologies of distributed algorithms when489

viewed as algorithms on and in a semitopological space — and this is an explicit longer-term490

motivation for our research. Investigating this is future work.491

Fail-prone systems and quorum systems492

Given a set of processes P in a distributed system, a fail-prone system [14] (or adversary493

structure [8]) is a set of fail-prone sets F = {F1, ..., Fn} where, for every 1 ≤ i ≤ n, Fi ⊆ P.494
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F denotes the assumptions that the set of processes that will fail (potentially maliciously)495

is a subset of one of the fail-prone sets. A quorum system for F is a set {Q1, ..., Qm} of496

quorums where, for every 1 ≤ i ≤ m, Qi ⊆ P, and such that497

for every two quorums Q and Q′ and for every fail-prone set F , (Q ∩ Q′) \ F ̸= ∅ and498

for every fail-prone set F , there exists a quorum disjoint from F .499

Several well-known distributed algorithms such as Bracha Broadcast [2] and PBFT [5] rely500

on a quorum system for a fail-prone system F in order to solve problems such as reliable501

broadcast and consensus assuming (at least) that the assumptions denoted by F are satisfied.502

More recent models generalise fail-prone systems to heterogeneous settings in which503

processes make different failure assumptions and have different quorums. Those models504

include Asymmetric Fail-Prone Systems [3], Learner Graphs [18], Federated Byzantine505

Agreement Systems [15], Federated Byzantine Quorum Systems [?], and Personal Byzantine506

Quorum Systems [12]. The last three build on Stellar’s Federated Byzantine Agreement507

Systems, where quorums are obtained using quorum slices (in Stellar’s terminology), which508

are a special case of the notion of witness in Definition 29(2). Cobalt, SCP, Heterogeneous509

Paxos, and the Ripple Consensus Algorithm [13, 15, 18, 17] are consensus algorithms that510

rely on heterogeneous quorums or variants thereof. The Stellar network [11] and Ripple [17]511

are two global payment networks that use heterogeneous quorums to achieve consensus512

among an open set of participants.513

The literature on fail-prone systems and quorum systems is most interested in synchron-514

isation algorithms for distributed systems and has been less concerned with their deeper515

mathematical structure. Some work by the second author and others [12] gets as far as516

proving an analogue to Lemma 9 (though we think it is fair to say that the presentation in517

this paper much simpler and more clear), but it fails to notice the connection with topology518

and the subsequent results which we present in this paper. So we can view this paper as519

beginning an in-depth mathematical study of heterogeneous quorum systems.520

6.2 Comments and future work521

Heterogeneous quorum systems are an empirical fact of many distributed systems (see the522

references in the two paragraphs above), and we believe we can make a strong claim in523

this paper to have proposed an illuminating and mathematically tractable analysis of what524

they are: semitopologies are novel but sit in a well-understood mathematical landscape, the525

proofs come out well, and witness functions go some way to explaining at a high level why526

heterogeneous quorum systems are empirically practical in the real world.527

The next step, which is current work and will be presented in a longer paper, is to528

study the mathematical and computational content of arriving at consensus, starting from a529

non-consensus state. In the language of this paper: given a possibly non-continuous function530

out of a semitopology, what does it mean to find a ‘nearby’ function that is continuous (i.e.531

represents a consensus state) that is in some sense close to and related to the starting state;532

and how, and in what conditions, can a nearby continuous function be computed? We hint533

at this in Remarks 12 and 46 where we note that such an analysis might do well to start534

locally by studying sets of open covers of points; this is future work.535

We also hope this paper may mark a beginning for new discussions, especially based on536

connections with topologies and perhaps event structures — including importing algorithms537

to improve implementations of heterogeneous quorum systems, exporting new and interesting538

applications, and gaining broader and deeper understandings of the mathematical structures539

and connections that seem to be involved here.540
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